tf-gpu版问题小记

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/hastings2k/article/details/79966294

前情:在tf-cpu版上练了几天,然后转到gpu版。光装相关环境就花了我两天时间。期间装了删删了装,重启数次。

就这样劳心劳力,最后终于成功“运行”,此时版本为tf1.6-cuda9.0-cudnn7.1.。当时测试了两个简单例子,其中一个是手写数字识别,大概是cpu版耗费时间的1/3.

但是到后来,进入cnn实例之后,原版copy的源码也无法在本地运行。

具体错误是:一运行Python就停止运行。点击调试就会进入vs2017,调试的内容我也看不懂,大概意思可能是pdb或者dll丢失还是找不到。

一开始很慌,因为python没有报错信息,vs我也看不懂。没有错误信息就没法找哪里出问题。

后来发现在jupyter里有错误提示,总结下了大概值得注意的是这么几个:1) cpu不支持avx2  ; 2)cudnn版本不对 

Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

Loaded runtime CuDNN library: 7102 (compatibility version 7100) but source was compiled with 7003 (compatibility version 7000).  
If using a binary install, upgrade your CuDNN library to match.  
If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.

一开始看着两个就很不明白。期间一遍跟别人交流,一遍百度。终于发现我想歪了:一开始我无脑百度,以为是cudnn版本低了,但是其实自己知道cudnn版本已经是能用的最新的几个了。

后来发现,这不是告诉我cudnn版本低了,而是tm的告诉我cudnn版本高了。

最后重下cudnn7.0 ,解决问题。

阅读更多
换一批

没有更多推荐了,返回首页