牛顿迭代法求平方根:
假设a。欲求a的平方根,首先猜测一个值X1=a/2,然后根据迭代公式 :
X(n+1)=(Xn+a/Xn)/2,
算出X2,再将X2代公式的右边算出X3等等,直到连续两次算出的Xn和X(n+1)的差的绝对值小于某个值,即认为找到了精确的平方根
例:
假设a=4,
x1=4/2=2;
x2=(2+4/2)/2=2 2-2<0.00001
==>平方根=2
假设a=9,
x1=9/2=4.5;
x2=(4.5+9/4.5)/2=3.25 4.5-3.25>0.00001
x3=(3.25+9/3.25)/2=3.00962 3.25-3.00962>0.00001
x4=(3.00962+9/3.00962)/2=3.00002 3.00962-3.00002>0.00001
....
==>平方根=3
利用循环,即可解题
#include<iostream>
#include<cmath> //调用求绝对值函数 fabs()
#include<cstdio> //使用格式化输出printf()
using namespace std;
int main()
{
double x,b,c;
cin>>x;
b=x/2;
while(1)
{
c=(b+x/b)/2;//迭代法求平方根
if(fabs(c-b)<0.00001)
break;
b=c;
}
printf("%.3f",c);
return 0;
}