给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。
思路:
方法一:因为不想二叉搜索树那样每个节点的子树都是有一定规则的,因此我们可以考虑求出每个点的字典序,记录下每个点以及它包含子树起始和开始的位置,这样我们只用判断每个节点是否能"包进去"p节点和q节点即可。
class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
class Solution {
TreeNode ans=null;
int len,cnt,maxdepth;
Map<Integer,Integer> st=new HashMap();
Map<Integer,Integer> ed=new HashMap();
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
len=0;cnt=0;maxdepth=0;
dfs1(root,1);
dfs2(root,1,p,q);
return ans;
}
private void dfs2(TreeNode root,int depth,TreeNode p,TreeNode q)
{
if(root==null)
return;
if(depth>maxdepth)
{
if(st.get(root.val)<=st.get(p.val) && ed.get(root.val)>=ed.get(p.val)
&& st.get(root.val)<=st.get(q.val) && ed.get(root.val)>=ed.get(q.val))
{
maxdepth=depth;
ans=root;
}
}
dfs2(root.left,depth+1,p,q);
dfs2(root.right,depth+1,p,q);
}
private void dfs1(TreeNode root,int num)
{
if(root==null)
return;
st.put(root.val, ++cnt);
dfs1(root.left,num+1);
dfs1(root.right,num+1);
ed.put(root.val, cnt);
}
}
方法二:常规递归遍历
从根节点开始遍历树。
如果当前节点本身是 p 或 q 中的一个,我们会将变量 mid 标记为 true,并继续搜索左右分支中的另一个节点。
如果左分支或右分支中的任何一个返回 true,则表示在下面找到了两个节点中的一个。
如果在遍历的任何点上,左、右或中三个标志中的任意两个变为 true,这意味着我们找到了节点 p 和 q 的最近公共祖先。
class Solution {
private TreeNode ans;
public Solution()
{
this.ans=null;
}
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
this.dfs(root, p, q);
return ans;
}
private boolean dfs(TreeNode root,TreeNode p,TreeNode q)
{
if(root==null)
return false;
int left=dfs(root.left,p,q)==true?1:0;
int right=dfs(root.right,p,q)==true?1:0;
int mid=(root==p || root==q)==true?1:0;
if(mid+left+right>=2)
this.ans=root;
return (mid+left+right)>0;
}
}
方法三:使用父指针迭代
从根节点开始遍历树。
在找到 p 和 q 之前,将父指针存储在字典中。
一旦我们找到了 p 和 q,我们就可以使用父亲字典获得 p 的所有祖先,并添加到一个称为祖先的集合中。
同样,我们遍历节点 q 的祖先。如果祖先存在于为 p 设置的祖先中,这意味着这是 p 和 q 之间的第一个共同祖先(同时向上遍历),因此这是 LCA 节点。
class Solution {
Deque<TreeNode> stack =new ArrayDeque<>();
Map<TreeNode,TreeNode>parent=new HashMap<>();
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
parent.put(root, null);
stack.push(root);
while(!parent.containsKey(p) || !parent.containsKey(q))
{
TreeNode node=stack.pop();
if(node.left!=null)
{
parent.put(node.left, node);
stack.push(node.left);
}
if(node.right!=null)
{
parent.put(node.right, node);
stack.push(node.right);
}
}
Set<TreeNode> ancestors=new HashSet();
while(p!=null)
{
ancestors.add(p);
p=parent.get(p);
}
while(!ancestors.contains(q))
q=parent.get(q);
return q;
}
}