JAVA程序设计:求解方程(LeetCode:640)

求解一个给定的方程,将x以字符串"x=#value"的形式返回。该方程仅包含'+',' - '操作,变量 x 和其对应系数。

如果方程没有解,请返回“No solution”。

如果方程有无限解,则返回“Infinite solutions”。

如果方程中只有一个解,要保证返回值 x 是一个整数。

示例 1:

输入: "x+5-3+x=6+x-2"
输出: "x=2"
示例 2:

输入: "x=x"
输出: "Infinite solutions"
示例 3:

输入: "2x=x"
输出: "x=0"
示例 4:

输入: "2x+3x-6x=x+2"
输出: "x=-1"
示例 5:

输入: "x=x+2"
输出: "No solution"

思路:一开始没看清题,自己yy出了一道题,写了tm200多行,发现题目已经局限这个方程是一次方程。。。wnm,亏我三分了半天。。一次方程就是个辣鸡题哇,直接求一波x的系数和常数项即可。只是有几个坑点自己注意一下即可。

class Solution {
    public String solveEquation(String equation) {
        
    	int sum=0;
    	boolean right=false;
    	boolean isFushu=false;
    	int[] a=new int[2];
    	
        for(int i=0;i<equation.length();i++) {
        	if(equation.charAt(i)>='0' && equation.charAt(i)<='9') {
        		sum=sum*10+equation.charAt(i)-'0';
        		if(i==equation.length()-1) {
        			work(0,a,sum,isFushu,right);
        			continue;
        		}
        	}
        	else {
        		if(equation.charAt(i)=='x') {
        			if(i==0 || i>0 && (equation.charAt(i-1)<'0' || equation.charAt(i-1)>'9'))
        				sum=1;
        			work(1,a,sum,isFushu,right);
        			isFushu=false;
        		}
        		else {
        			if(i>0 && equation.charAt(i-1)!='x')
        				work(0,a,sum,isFushu,right);
        			isFushu=false;
        			if(equation.charAt(i)=='-') isFushu=true;
        			else if(equation.charAt(i)=='=') right=true;
        		}
        		sum=0; 
        	}
        }

        if(a[1]==0 && a[0]!=0) return "No solution";
        if(a[1]==0 && a[0]==0) return "Infinite solutions";
        if(a[0]==0) return "x=0";
        return "x="+String.valueOf(-a[0]/a[1]);
    }
    
    private void work(int id,int[] a,int sum,boolean isFushu,boolean right) {
    	a[id]+=((isFushu==true && right==false ||  isFushu==false && right==true)?-sum:sum);
    }
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值