HDU 1402 A * B Problem Plus(FFT)


题解:题意很简单,但是我们采用大数乘法的话复杂度是O(n^2),一定会超时的。

因此需要想一个更优的方法,也就是FFT了。这里就简要介绍一下了(理解不算太透彻)

叉解的FFT讲解:https://wenku.baidu.com/view/20c234cf581b6bd97f19eaea.html

大佬的FFT讲解:http://blog.csdn.net/acdreamers/article/details/39005227

FFT(快速傅里叶变换)在信息学的应用极为广泛,其中重要的一项应用便是求解多项式,因为

普通的多项式求解的复杂度是N^2,大多数时候无法满足需要,因此我们迫切需要一种更快的求解方式。

也就出现了FFT,关于系数表示法这里不再多讲,详情看上两个链接即可。

我就说一下具体的求解步骤,在了解了多项式的点值表示法后,我们需要选择n个点作为求值点

这n个点不能随便选,否则仍然不能降低复杂度,而是选择n次单位复根,为什么这样选?

次单位复根是满足的复数次单位复根恰好有个,它们是

了解释这一式子,利用复数幂的定义,值称为主次单位根,

所有其次单位复根都是次幂。

 

n个次单位复根在乘法运算下形成一个群,该群的结构与加法群相同。

 

    接下来认识几个关于次单位复根的重要性质。

   

    (1)相消引理

 

        对于任何整数,有

 

    (2)折半引理

 

        如果且为偶数,则

 

    (3)求和引理

 

        对任意整数和不能被整除的非零整数,有

 

          


我们利用的就是n次单位复根的折半引理。。




这样原本的多项式便一分为二,剩下的就是分治的思想了,

由于在奇偶分类时导致顺序发生变化,所以需要先通过Rader算法进行倒位序,

然后通过蝴蝶操作可以将前半部分和后半部分的值求出。。。

总时间复杂度O(nlog(n))... 因为没有完全理解,讲解有些问题,日后慢慢补充。。。

模板参考:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210389.html

#include<math.h>
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
const double PI = acos(-1.0);
#define maxn 200010
struct complex 
{
	double r,i;
	complex(double _r=0.0,double _i=0.0)
	{
		r=_r;i=_i;
	}
	complex operator +(const complex &b)
	{
		return complex(r+b.r,i+b.i);
	}
	complex operator -(const complex &b)
	{
		return complex(r-b.r,i-b.i);
	}
	complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
};
/*
 * 进行FFT和IFFT前的反转变换。
 * 位置i和 (i二进制反转后位置)互换
 * len必须取2的幂
 */
complex x1[maxn],x2[maxn];
char str1[maxn],str2[maxn];
int sum[maxn];
//雷德算法--倒位序  
void change(complex y[],int len)
{
	int i,j,k;
	for(i=1,j=len/2;i<len-1;i++)
	{
		if(i<j)            
			swap(y[i],y[j]);
		//交换互为小标的元素,i<j保证只交换一次
		//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
		k=len/2;
		while(j>=k)
			j-=k,k/=2;
		if(j<k)
			j+=k;  
	}
}
/*
 * 做FFT
 * len必须为2^k形式,
 * on==1时是DFT,on==-1时是IDFT
 */
void fft(complex y[],int len,int on)
{
	change(y,len);
	for(int h=2;h<=len;h<<=1)//分治后计算长度为h的DFT
	{
		complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));//单位复根e^(2*PI/m)用欧拉公式展开 
		for(int j=0;j<len;j+=h)
		{
			complex w(1,0);//旋转因子  
			for(int k=j;k<j+h/2;k++)
			{
				complex u=y[k];
				complex t=w*y[k+h/2];
				y[k]=u+t;//蝴蝶合并操作 
				y[k+h/2]=u-t;
				w=w*wn;//更新旋转因子 
			}
		}
	}
	if(on == -1)
        for(int i = 0;i < len;i++)
            y[i].r /= len;
}
int main(void)
{
	while(scanf("%s%s",str1,str2)!=EOF)
	{
		int len1=strlen(str1);
		int len2=strlen(str2);
		int len=1;
		while(len<len1*2 || len<len2*2)
			len<<=1;
		for(int i=0;i<len1;i++)
			x1[i]=complex(str1[len1-1-i]-'0',0);
		for(int i=len1;i<len;i++)
			x1[i]=complex(0,0);
		for(int i=0;i<len2;i++)
			x2[i]=complex(str2[len2-1-i]-'0',0);
		for(int i=len2;i<len;i++)
			x2[i]=complex(0,0);
		fft(x1,len,1);fft(x2,len,1);//求DFT
		for(int i=0;i<len;i++)
			x1[i]=x1[i]*x2[i];
		fft(x1,len,-1);//求IDFT
		for(int i=0;i<len;i++)
			sum[i]=(int)(x1[i].r+0.5);
		for(int i=0;i<len;i++)
		{
			sum[i+1]+=sum[i]/10;
			sum[i]%=10;
		}
		len=len1+len2-1;
		while(sum[len]<=0 && len>0)
			len--;
		for(int i=len;i>=0;i--)
			printf("%c",sum[i]+'0');
		printf("\n");
	}
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值