HDU 1402 A * B Problem Plus FFT

http://acm.hdu.edu.cn/showproblem.php?pid=1402
Calculate A * B.
Input
Each line will contain two integers A and B. Process to end of file.

Note: the length of each integer will not exceed 50000.
Output
For each case, output A * B in one line.
Sample Input
1
2
1000
2
Sample Output
2
2000

#include<cstdio>
#include<algorithm>
#include<cstring>
#define MOD 1000000007
using namespace std;        //FFT模板
                            //位数不同的高精度乘法

const int maxn=5e4+5;

struct Complex //复数类
{
    double x,y;
    Complex(double dx=0,double dy=0)
    {
        x=dx;
        y=dy;
    }
};

Complex operator +(Complex a,Complex b)
{
    return Complex(a.x+b.x,a.y+b.y);
}
Complex operator -(Complex a,Complex b)
{
    return Complex(a.x-b.x,a.y-b.y);
}
Complex operator *(Complex a,Complex b)
{
    return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}

const double pi=acos(-1.0); //PI
int limit=1,bit=0; //limit为最终扩充的长度 limit = 1<<bit
int wz[maxn<<2];
int re[maxn<<2]; //存储结果
Complex a[maxn<<2],b[maxn<<2];
char s1[maxn],s2[maxn];//存储两个整数

void FFT(Complex *A,int inv)
{
    for(int i=0;i<limit;i++)
        if(i<wz[i])
            swap(A[i],A[wz[i]]);
    for(int mid=1;mid<limit;mid<<=1)
    {
        Complex wn(cos(pi/mid),inv*sin(pi/mid));
        for(int i=0;i<limit;i+=mid<<1)
        {
            Complex w(1,0);
            for(int j=0;j<mid;j++,w=w*wn)
            {
                Complex t1=A[i+j];
                Complex t2=w*A[i+mid+j];
                A[i+j]=t1+t2;
                A[i+mid+j]=t1-t2;
            }
        }
    }
}

int main()
{
    while(~scanf("%s%s",s1,s2))
    {
        memset(wz,0,sizeof(wz));
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        limit=1,bit=0;
        int temp;
        int len1=strlen(s1),len2=strlen(s2);
        int len=len1+len2;
        while(limit<=len)
        {
            limit<<=1;
            bit++;
        }               //一个n位的十进制数 可以看做一个n-1次多项式
        for(int i=len1-1,j=0;i>=0;i--,j++)
        {
            a[j].x=s1[i]-48;
            a[j].y=0;
        }
        for(int i=len2-1,j=0;i>=0;i--,j++)
        {
            b[j].x=s2[i]-48;
            b[j].y=0;
        }
        for(int i=0;i<limit;i++)
            wz[i]=(wz[i>>1]>>1)|((i&1)<<(bit-1));
        FFT(a,1);
        FFT(b,1);
        for(int i=0;i<limit;i++)
            a[i]=a[i]*b[i];
        FFT(a,-1);
        memset(re,0,sizeof(re));
        for(int i=0;i<=limit;i++)
        {
            re[i]+=(int)(a[i].x/limit+0.5);
            if(re[i]>=10) //进位
            {
                re[i+1]+=re[i]/10;
                re[i]%=10;
                if(i==limit)
                    ++limit;
            }
        }
        while(!re[limit]&&limit>=1)//去除高位的0
            limit--;
        while(limit>=0)
            printf("%d",re[limit--]);
        printf("\n");
    }
    return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
。支持yolov5s,yolov5m,yolov5l.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值