题目链接:https://cn.vjudge.net/contest/208908#problem/N
题目大意:给你n个木棍,一些木棍是可以辨别的,另一些木棍是无法辨别的,让你每次从这一对木棍中调出一个来放在盒子中,直到所有木棍都至少放在盒子里一次结束操作,每放一根木棍,就要消耗木棍长度等价的体力,对于能够辨别的木棍,若放在盒子中一次,则主人公一定不会再挑他了,对于不能辨别的木棍,因为不能识别,所以有可能被放无数次,问你耗费的体力的期望。
题目解答:对于能辨别的木棍,我们就假设放过它后,木棍数量减一即可,因为不可能放他了,设dp[i][j]表示已经放了i个不可辨别的木棍和j个可辨别的木棍的耗费体力的期望,我们直接递推即可,概率转移方程为:
dp[i][j]=(num2-i)/sum*(dp[i+1][j]+sm2)+(num1-j)sum*(dp[i][j+1]+sm1)+i/sum*(dp[i][j]+sm2)
其中num1,num2为两种木棍的个数,sm1,sm2为两种木棍消耗的平均体力,sum为当前剩下的木棍数量。
因为开不了5000*5000的数组,因此我们需要滚动一下,卡时间过的,听说更快的方法是预处理调和级数。。。。
#include<stdio.h>
#include<string.h>
double dp[2][5005];
int main(void)
{
int T,n,x,y,i,j,cases=0;
scanf("%d",&T);
while(T--)
{
int num1=0,num2=0;
double sm1=0,sm2=0;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
if(y==1)
num1++,sm1+=x;
else
num2++,sm2+=x;
}
if(num1)
sm1/=num1;
if(num2>0)
sm2/=num2;
for(i=num2;i>=0;i--)
{
memset(dp[i%2],0,sizeof(dp[i%2]));
for(j=num1;j>=0;j--)
{
if(i==num2 && j==num1)
continue;
int sum=n-j;
dp[i%2][j]=dp[(i+1)%2][j]*(num2-i)/sum+sm2*num2/sum;
dp[i%2][j]+=dp[i%2][j+1]*(num1-j)/sum+sm1*(num1-j)/sum;
dp[i%2][j]=dp[i%2][j]*sum/(sum-i);
}
}
printf("Case %d: %.7f\n",++cases,dp[0][0]);
}
return 0;
}