简介:
BERT (Bidirectional Encoder Representations from Transformers)是一种基于Transformer模型的预训练语言模型,由Google在2018年提出。相比于之前的语言模型,BERT引入了双向预训练机制,并在多个自然语言处理任务中取得了极高的性能。
BERT的预训练分为两个阶段:Masked Language Model (MLM)和Next Sentence Prediction (NSP)。在MLM阶段中,输入序列中的一部分随机被掩盖,模型需要通过上下文来预测被掩盖的单词是什么。在NSP阶段中,模型需要判断两个句子是否连续,以此来学习句子之间的关系。
BERT的主要贡献在于,它在预训练阶段使用了大量的无标注文本数据,通过双向的Transformer模型对这些数据进行训练,从而学习到了丰富的语言知识。在具体应用时,可以将BERT作为一个通用的语言特征提取器,将其fine-tune到各种下游任务中,从而取得了很好的效果。BERT的成功启发了许多后续的研究,如GPT-2、RoBERTa、ALBERT等,它们都是在BERT的基础上进行改进和拓展的。
BERT模型结构
BERT模型结构由多个Transformer块组成,其中每个Transformer块由多个注意力头和前馈神经网络组成。BERT的双向预训练机制使得模型可以同时考虑上下文信息,从而更好地理解自然语言文本。
预训练任务
BERT的预训练任务分为两个部分:Masked Language Model (MLM)和Next Sentence Prediction (NSP)。
Masked Language Model (MLM)
在MLM任务中,BERT随机选择输入序列中的一些单词并将其替换为特殊的[MASK]标记,然后要求模型根据上下文来预测这些被替换的单词是什么。此外,模型还可以使用原始的单词和其他已经替换过的单词来进行预测。
这个任务的目的是让模型学习到上下文之间的关系,从而提高模型的上下文理解能力。
Next Sentence Prediction (NSP)
在NSP任务中,BERT需要判断两个输入句子是否是连续的,即第二个句子是否是第一个句子的下一句。这个任务的目的是让模型学习到句子之间的关系,从而提高模型在自然语言推理等任务上的表现。
Fine-tuning
在具体应用时,可以将BERT作为一个通用的语言特征提取器,将其fine-tune到各种下游任务中,例如文本分类、问答系统等。在fine-tuning阶段,可以在BERT的输出层之上添加额外的全连接层等结构,从而适应不同的任务需求。
总结
BERT通过使用双向Transformer模型对大量无标注语料进行预训练,从而学习到了丰富的语言知识,使其可以作为通用的语言特征提取器,适用于各种自然语言处理任务。它的成功启发了许多后续的研究,例如GPT-2、RoBERTa、ALBERT等。