获取更多资讯,赶快关注上面的公众号吧!
2024龍年开工的第一篇原创文章,给大家带来2023年基于强化学习求解调度的文章汇总(去年也分享过2022年强化学习求解车间调度文章大汇总)。在读博期间研究的也是这个方向,所以平时也一直在关注着相关动态,今天分享出来供大家参考。关注公众号《智能制造与智能调度》,后台回复“2023”获取参考文献PDF。
从1995年最早将强化学习用于车间调度问题后,在随后的几年里,强化学习一直不温不火,最主要的原因是一般的强化学习无法解决状态空间爆炸的问题,直到2018年深度强化学习开始进军调度领域,并在随后的几年里爆发式增长。尤其是在2023年,更是惊人地出现了至少141篇相关文章,感觉不用强化学习算法都不好意思上街。一方面深度强化学习确实利用深度学习领域技术实现了未知状态下行为的预测,另一方面车间调度一直是悬而未决的经典问题,也是检验包括深度强化学习在内的各种算法的测试床。
- [1] F. N. Li, S. Lang, B. Y. Hong, and T. Reggelin, “A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups,” Journal of Intelligent Manufacturing, 2023, doi: 10.1007/s10845-023-02094-4.
- [2] X. Yang, H. Wang, and L. Li, “Train operation scheduling optimization based on deep reinforcement learning,” in Journal of Physics: Conference Series, 2023, vol. 2558, no. 1: IOP Publishing, p. 012042.
- [3] J. M. Zhang, T. Wang, and L. L. Cheng, “Time-Sensitive and Resource-Aware Concurrent Workflow Scheduling for Edge Computing Platforms Based on Deep Reinforcement Learning,” Applied Sciences-Basel, vol. 13, no. 19, Oct 2023, Art no. 10689, doi: 10.3390/app131910689.
- [4] X. Wu and X. Yan, “A spatial pyramid pooling-based deep reinforcement learning model for dynamic job-shop scheduling problem,” Computers & Operations Research, vol. 160, p. 106401, 2023/12/01/ 2023, doi: https://doi.org/10.1016/j.cor.2023.106401.
- [5] T. Zhou, L. Luo, Y. X. He, Z. W. Fan, and S. C. Ji, “Solving Panel Block Assembly Line Scheduling Problem via a Novel Deep Reinforcement Learning Approach,” Applied Sciences-Basel, vol. 13, no. 14, Jul 2023, Art no. 8483, doi: 10.3390/app13148483.
- [6] Z. Wang, B. Cai, J. Li, D. Yang, Y. Zhao, and H. Xie, “Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach,” Computers & Operations Research, vol. 151, p. 106095, 2023/03/01/ 2023, doi: https://doi.org/10.1016/j.cor.2022.106095.
- [7] E. Yuan, S. Cheng, L. Wang, S. Song, and F. Wu, “Solving job shop scheduling problems via deep reinforcement learning,” Applied Soft Computing, vol. 143, 2023, doi: 10.1016/j.asoc.2023.110436.
- [8] Z. Q. Wang and W. Z. Liao, “Smart scheduling of dynamic job shop based on discrete event simulation and deep reinforcement learning,” Journal of Intelligent Manufacturing, 2023 Jun 2023, doi: 10.1007/s10845-023-02161-w.
- [9] Y. Ping, Y. Liu, L. Zhang, L. Wang, and X. Xu, “Sequence generation for multi-task scheduling in cloud manufacturing with deep reinforcement learning,” Journal of Manufacturing Systems, vol. 67, pp. 315-337, 2023, doi: 10.1016/j.jmsy.2023.02.009.
- [10] X. Y. Liu, L. Liu, and T. H. Jiang, “A self-learning interior search algorithm based on reinforcement learning for energy-aware job shop scheduling problem with outsourcing option,” Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 10085-10100, 2023, doi: 10.3233/jifs-224624.
- [11] Y. M. Gu, M. Chen, and L. Wang, “A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem,” Applied Intelligence, 2023, doi: 10.1007/s10489-023-04479-7.
- [12] C. W. de Puiseau, J. Peters, C. Dorpelkus, H. Tercan, and T. Meisen, “schlably: A Python framework for deep reinforcement learning based scheduling experiments,” Softwarex, vol. 22, May 2023, Art no. 101383, doi: 10.1016/j.softx.2023.101383.
- [13] K. ZHANG, L. BI, and X. JIAO, “Research on Flexible Job-shop Scheduling Problems with Integrated Reinforcement Learning Algorithm,” China Mechanical Engineering, vol. 34, no. 02, p. 201, 2023.
- [14] M. H. Yuan, L. Zheng, H. Y. Huang, K. W. Zhou, F. Q. Pei, and W. B. Gu, “Research on flexible job shop scheduling problem with AGV using double DQN,” Journal of Intelligent Manufacturing, 2023 Nov 2023, doi: 10.1007/s10845-023-02252-8.
- [15] L. B. Deng, Y. Z. Di, and L. Wang, “A Reinforcement-Learning-Based 3-D Estimation of Distribution Algorithm for Fuzzy Distributed Hybrid Flow-Shop Scheduling Considering On-Time-Delivery,” Ieee Transactions on Cybernetics, 2023 Dec 2023, doi: 10.1109/tcyb.2023.3336656.
- [16] J. Hu, Reinforcement Learning for Planning and Scheduling in Aviation. 2023.
- [17] Y. T. Wu, L. Wang, J. F. Chen, J. Zheng, and Z. X. Pan, “A reinforcement learning driven two-stage evolutionary optimisation for hybrid seru system scheduling with worker transfer,” International Journal of Production Research, 2023 Aug 2023, doi: 10.1080/00207543.2023.2252523.
- [18] Y. D. Chen, J. L. Ding, and Q. D. Chen, “A Reinforcement Learning Based Large-Scale Refinery Production Scheduling Algorithm,” Ieee Transactions on Automation Science and Engineering, 2023 Oct 2023, doi: 10.1109/tase.2023.3321612.
- [19] T. Zhou, L. Luo, S. Ji, and Y. He, “A Reinforcement Learning Approach to Robust Scheduling of Permutation Flow Shop,” Biomimetics (Basel, Switzerland), vol. 8, no. 6, 2023 Oct 2023, doi: 10.3390/biomimetics8060478.
- [20] A. Esteso, D. Peidro, J. Mula, and M. Diaz-Madronero, “Reinforcement learning applied to production planning and control,” International Journal of Production Research, vol. 61, no. 16, pp. 5772-5789, Aug 2023, doi: 10.1080/00207543.2022.2104180.
- [21] C. Yang et al., “Reinforcement Learning and Stochastic Optimization with Deep Learning-Based Forecasting on Power Grid Scheduling,” Processes, vol. 11, no. 11, Nov 2023, Art no. 3188, doi: 10.3390/pr11113188.
- [22] A. Sabri, H. Allaoui, and O. Souissi, “Reinforcement learning and stochastic dynamic programming for jointly scheduling jobs and preventive maintenance on a single machine to minimise earliness-tardiness,” International Journal of Production Research, pp. 1-15, 2023, doi: 10.1080/00207543.2023.2172472.
- [23] Z. Y. Sun, W. M. Han, and L. L. Gao, “Real-time scheduling for dynamic workshops with random new job insertions by using deep reinforcement learning,” Advances in Production Engineering & Management, vol. 18, no. 2, pp. 137-151, Jun 2023, doi: 10.14743/apem2023.2.462.
- [24] C. C. Lin, K. Y. Chen, and L. T. Hsieh, “Real-Time Charging Scheduling of Automated Guided Vehicles in Cyber-Physical Smart Factories Using Feature