2024年强化学习求解调度文章大盘点

获取更多资讯,赶快关注公众号《智能制造与智能调度》吧!

来了来了,还是来了!2024强化学习求解调度问题大盘点虽迟但到!

相关文献及文献原文均已整理打包,关注公众号,后台回复"2024",获取下载链接。

从1995年最早将强化学习用于车间调度问题后,在随后的几年里,强化学习一直不温不火,最主要的原因是一般的强化学习无法解决状态空间爆炸的问题,直到2018年深度强化学习开始进军调度领域,并在随后的几年里爆发式增长,在2024年,更是惊人地出现了至少186篇相关文章,相比于2023年,在综述、代码开源、多代理RL、算法融合、问题场景等方面,成果更加丰富和显著。总体而言,2024年DRL在调度领域的研究呈现复杂化、多目标化、跨学科化趋势。

2024DRL调度文章汇总

综述类文章

4篇综述类文章,分别从DRL在分布式调度、与元启发式算法融合、生产调度、图神经网络结合作业车间调度等方面,进行了详细的阐述,可以从整体上快速了解这个方向当前已有的研究成果。

  • [1] Z. J. K. Abadi, N. Mansouri, and M. M. Javidi, “Deep reinforcement learning-based scheduling in distributed systems: a critical review,” Knowledge and Information Systems, vol. 66, no. 10, pp. 5709-5782, Oct, 2024.
  • [2] Y. P. Fu, Y. F. Wang, K. Z. Gao, and M. Huang, “Review on ensemble meta-heuristics and reinforcement learning for manufacturing scheduling problems,” Computers & Electrical Engineering, vol. 120, Dec, 2024.
  • [3] V. Modrak, R. Sudhakarapandian, A. Balamurugan, and Z. Soltysova, “A Review on Reinforcement Learning in Production Scheduling: An Inferential Perspective,” Algorithms, vol. 17, no. 8, Aug, 2024.
  • [4] I. G. Smit, J. N. Zhou, R. Reijnen, Y. X. Wub, J. Chen, C. Zhang, Z. Bukhsh, Y. Q. Zhang, and W. Nuijten, “Graph neural networks for job shop scheduling problems: A survey,” Computers & Operations Research, vol. 176, Apr, 2024.

开源代码解析

DRL常被诟病的点在于其复现性较弱,尤其是在复杂场景下,复现过程存在细节逻辑不透明、参数调优难度大等痛点,通过代码开源可以很好的提供逻辑参考和结果对比。

2024年有大约20篇文章提供了开源链接,其中部分仅给出了环境的建模代码。

研究问题分类

经典调度问题及其扩展

  • 柔性作业车间调度(FJSP):成为最热门的求解问题(如文献5、6、21、31、102、129、183),重点关注动态性(新作业插入、机器数量变化)和多目标优化(能耗、成本、时间)。
  • 分布式调度:涉及分布式系统(文献1、8、13、23、146)、异构资源(文献9、148)和跨工厂协作(文献58)。
  • 混合流水车间(HFS):结合批处理、AGV运输(文献3、68、103、153),强调能源效率(文献15、70)。

动态与不确定性处理

  • 动态订单插入(文献55、103)
  • 随机作业到达(文献41、117)
  • 不确定处理时间(文献43、117)
  • 鲁棒优化(文献52)

多目标优化

  • 能效与低碳࿱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松间沙路hba

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值