机器学习(XgBoost)预测顶和底

之前的文章中,我们对中证1000指数进行了顶和底的标注。这一篇我们将利用这份标注数据,实现机器学习预测顶和底,并探讨一些机器学习的原理。

我们选取的特征非常简单–上影线和WR(William’s R)的一个变种。选取这两个因子,是基于东吴证券高子剑在2020年6月的一份研报:上下影线,蜡烛好还是威廉好?

他们的结论是,根据这两类指标的变种得到的综合因子,在2009到2020年4月,以全A为样本,进行5组分层多空测试,得到年化收益为15.86%,最大回撤仅为3.68%,可以说具有非常明显的信号意义。

在这里插入图片描述

在上一篇文章中,我们提到机器学习总是把要解决的问题归类为两类,一类是回归,一类是分类。如果要预测的target取值处在连续实数域上,这往往是个回归问题;如果target的值域为有限个离散状态,则是一个分类问题。

然而,具体问题总是复杂许多。初学者会觉得,既然股价的取值是在连续实数域上,因此可以把它看成回归问题,使用类似LSTM之类的神经网络来预测股价。但实际上由于金融数据的噪声问题,这么做并没有什么道理。

很可能只有在构建资产定价模型时,才可以当成回归来处理,也就是,根据公司的基本面和宏观经济指标来确定公司的市值,进而推算出股价。这本质上跟预测落杉叽的房价是同样的问题。

如果我们要构建时序方向上的预测信号呢?很可能只能用我这里的方法,不去预测每一个bar的涨跌和价格,而是改为预测顶和底,最终实现买在底部,卖出在顶部。

安装XgBoost

我们一般通过conda来安装它的Python包,但pip(需要版本在21.3以上)也是可以的。

conda install -c conda-forge py-xgboost

在Windows上安装时,还需要额外安装VC的分发包。

如果你的机器安装有支持cuda的GPU,那么conda会自动安装带GPU支持的xgboost。

不过,GPU对xgboost的加速并没有对CNN这样的神经网络那么明显。也就是说,即使有GPU,xgboost也只会在某些阶段利用到GPU加速,总体上可能会快几倍而已。考虑到我们的标注数据本身比较小,这个加速并不重要。

数据构造

经过顶底数据标注之后,我们已经获得了一份如下格式的数据:

这份数据包括了标签(即flag一列),但没有我们要的特征工程数据。因此,我们要先从OHLC数据中提取出特征。

我们决定先从最简单的特征提取–上影线和WR(William’s R)的一个变种。选取这两个因子,是基于东吴证券高子剑在2020年6月的一份研报:上下影线,蜡烛好还是威廉好?

他们的结论是,根据这两类指标的变种tr得到的综合因子,在2009到2020年4月,以全A为样本,进行5组分层多空测试,得到年化收益为15.86%,最大回撤仅为3.68%,可以说具有非常明显的信号意义。

66%

基于这个基础,我们改用机器学习的方法来做一遍。我们用来提取上下影线和WR的方法如下:

def wr_up(bars):
    h, c, l = bars["high"], bars["low"], bars["close"]
    shadow = h - c

    # 技巧:避免产生除零错误,且不影响结果正确
    return shadow/(h - l + 1e-7)

def wr_down(bars):
    h, c, l = bars["high"], bars["low"], bars["close"]
    shadow 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化风云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值