QuanTide-weekly第1期 这周我们共发表5篇文章。等两篇详细讲解了机器学习构建组合策略的框架和常见问题。这两篇文章我们也集结后,发在本文末尾。在这一期的量化工具专栏中,我们发表了。IPython是非常轻量的交互式编程工具,尽管它的所有功能都可以在Notebook中找到,但它更轻,但仍然长袖擅舞,颇有飞燕之姿。在中,我们披露了《Python高效编程实践指南》出版过程中的一些冏事。这本书会对量化人构建稳健的交易系统非常有帮助。
圣杯依然闪耀 --基于短时RSI的均值回归策略跑出30%年化 圣杯依然闪耀 RSI 永远是我最爱的指标 – 因为潮汐和回归是这个蓝色星球的生命年轮,这样的轮回也存在于交易世界。而 RSI 就是刻画市场中的潮汐和回归的最好指标之一。
pandas高级技巧之多级索引和分组操作 在量化领域,Pandas是不可或缺的工具,它以强大的数据处理和分析功能,极大地简化了数据操作流程。今天我们介绍两个技巧,都跟因子检验场景相关。第一个技巧是日期按月对齐;第二个是如何提取分组的前n条记录。讲解的概念涉及到group操作、索引的frequency概念以及多级索引的操作(读取和删除)。在最后一个例子中,更是反复使用了groupby,以简洁的语法,完成了一个略为复杂的数据操作。
全球Windows机器蓝屏,作为量化人,我的检讨来了 如果CrowedStrike实现了灰度部署,比如,一开始只部署1%的机器,并且监控升级后的情况(收集数据是灰度发布的一部分),然后在没有错误报告的情况下,再逐步扩大推送范围,就完全可以避免出现这么重大的事故。灰度发布同样适用于量化系统。2012年8月1日,骑士资本在纳斯达克交易所部署了一个新的交易软件,但是由于没有充分测试,该软件在激活时触发了一系列错误的交易指令,导致公司在45分钟内损失了约4.4亿美元。最终导致了它被Jefferies Group收购。
pip安装慢,如何换源? 如果觉得命令不好记,有两种方法,一是安装cfg4py,这是我开发的一个包,用来解决Python的配置文件读取问题,它可以让你用yaml格式写配置文件,但在程序中却是以python class的属性语法来访问配置项,这样不用写。更换 pip 的默认源至国内的镜像源可以显著提高下载速度,尤其是在网络环境不佳或国外源响应慢的情况下。在 Windows 系统中,配置文件通常位于用户的主目录下的 .pip 文件夹中,即 %USERPROFILE%.pip。不过我们这里要讲的是它的另一个功能,就是对常用配置进行提示。
为什么Python虚拟环境应该只用conda? Python 的虚拟环境方案可谓源远流长,种类繁多。如果你接触 Python 已经有一段时间了,那么你很可能听说过 annaconda, virutalenv, venv, pip, pipenv, poetry, pyenv, pyvenv, pyenv-virtualenv, virtualenvwrapper, pyenv-virtualenv wrapper 等相似概念。
关于IPython你需要知道的21个小技巧 IPython 是一个强大的交互式 Python shell,它比标准的 Python shell 提供了更多的功能和便利。IPython 由 Fernando Pérez 在 2001 年创建,旨在为科研人员和数据科学家提供一个更高效、更易用的交互式 Python 编程环境。随着时间的发展,IPython 已经成为科学计算、数据分析和机器学习领域中不可或缺的工具之一。IPython的成功,也催生了Jupyter。2014年,Jupyter 从 IPython 项目中分离出来,并扩展到其它语言。
高端的食材,往往只需要最简单的烹饪!ORB,仅此一招,Alpha达到年化36% 常常看到有人提问,如何挖掘因子和策略?ORB 策略的改进历史能给我们许多启发。一是一个策略值得研究数十年;二是温故而知新是永远的法宝。沉下心来,真正吃透 IT 系统、吃透数据和已有策略,比追风要好得多。炒股要炒大热门,但对大热门的追踪,不一定是要通过文本分析。如果你对本文引用的资源感兴趣,请转发本文后领取这个策略来自 Carlo Zarattini 等人,在 Quantpedia 2023 年大赛中获第三名。
不能求二阶导的metrics,不是好的objective?! 今天我们要分析 MAPE 这个函数在论文中的使用。以此为契机,适当深入一点机器学习的原理,讲以下两个知识点:1. 损失函数和度量函数2. XGBoost模型,因子数据是否要标准化。
高薪金领都用啥编程语言?SQL、Python领航,附排名! 关于Python,在工程技巧方面可以参考我的新书《Python高效编程实战指南》,算法方面可以多刷leetcode、kaggle的题,或者简街、千禧的puzzle专栏,我们的专栏也不时会有一些性能优化的技巧。但是,金融行业对C++和Rust这样的互联网热门编程语言的需求并不大,尽管这两种语言在高频交易中不可或缺,但毕竟高频交易比较小众、无法吸纳大资金,因此行业的重心不会在这里。因此,Python才是真正意义上的王者,不仅仅是在金融领域,根据TIOBE 6月的排名,它仍然位居榜首,并且受欢迎程度在上升中。
基于 XGBoost 的组合策略基本框架 如何在投资组合策略中运用上机器学习方法? 最近,我们翻了下之前存过的论文,决定对《A portfolio Strategy Based on XGBoost Regression and Monte Carlo Method》这篇论文进行解读
反抗者的崛起!Fawce 和 Quantopian 的量化之路 在编写关于因子分析与机器策略的课程的过程中,无意中发现了 Fawce 的故事。受同样的理念激励的,不仅仅是 Quantopian, Fawce, Saeed,也包括分布在世界上其他地方的人,包括我自己。于是我决定暂停写作,花几天时间挖掘一下 Fawce 的故事,并和大家分享。**因为知道因何而战,永远比战斗本身更重要。**给所有量化人、和准备进入量化行业的人。
顶底背离的终极猜想和运用 对高频量化,他们看的是tick级数据,可能持有几分钟就会调仓;散户和量化多在日线和周线频率上操作,持有数天就调仓;长线资金以季度为单位。越是长线的资金,资金量越大,调仓时对走向的影响越强。现在,你应该已经猜到了,有一部分资金会在日线RSI高点时撤出;大量的资金会在周线的RSI高点撤出;而更大量的资金会在月线的RSI高点撤出。但我猜没有资金会根据季线的RSI高点撤出。许多真理,都不能线性外推。