- 博客(8)
- 收藏
- 关注
原创 【Matlab群体智能算法第八期】基于logistic-sine融合混沌映射的改进LSPSO算法(含完整matlab代码)
随着粒子维度的增加logistic-sine-PSO算法的求解稳定性及优越性更加突出。根据上述结果能够发现,尽管采用logistic-sine融合混沌映射策略后,PSO算法能够具有较好的提升,但与Sine混沌映射相比,当粒子维度为3时,logistic-sine算法改进的PSO算法解的精度及稳定性反而有所降低。当粒子维度为50时,logistic-sine-PSO算法在10次求解过程中均领先Sine-PSO算法与改进的Sine-PSO算法,并未出现Sine-PSO算法中某几次适应度函数值较大的现象。
2024-01-16 23:36:48 2107 2
原创 【Matlab群体智能算法第七期】基于改进Sine混沌映射的ISPSO算法(含完整matlab代码)
根据上述结果可知,当粒子维度为3时ISine-PSO算法求解能力弱于Sine-PSO算法,但随着粒子维度的增加ISine-PSO算法的求解稳定性及优越性更加突出,以粒子维度为100时为例,采用ISine混沌映射策略的PSO算法适应度函数值明显优于Sine-PSO算法,且领先幅度较大。根据上述结果能够发现,尽管采用ISine算法后,PSO算法能够具有较好的提升,但与Sine混沌映射相比,当粒子维度为3时,ISine算法改进的PSO算法解的精度及稳定性反而有所降低。mod(b,1)表示对b取1的余数。
2023-11-26 13:59:06 827 1
原创 【Matlab群体智能算法第六期】基于Sine混沌映射的SPSO算法(含完整matlab代码)
在上述计算过程中,尽管采用Sine混沌映射策略能够较好的提升PSO算法的求解精度,但混沌映射等针对粒子群算法种群初始化的改进策略,仅在算法初始化阶段进行,在后续种群更新迭代等过程中并不会继续参与。因此,该改进策略一般伴随种群更新改进等方式结合使用,以提升算法改进的稳定性及改进质量。根据上述对比结果可知,采用Sine混沌映射策略后,能够在该目标函数下实现较好的求解效果,且算法求解的稳定性较好,在10次求解过程中,基于Sine混沌映射策略的PSO算法适应度函数的最小值、均值及最大值,均优于传统粒子群优化算法。
2023-11-26 12:53:53 871 1
原创 【Matlab群体智能算法第五期】基于改进Tent混沌映射的ITPSO算法(含完整matlab代码)
文章对基于Tent混沌映射的粒子群算法的原理及matlab代码复现进行讲解,与传统种群初始化方法,Tent能够提升初始种群的多样性及种群解的数量,从而提高算法求解效率。但Tent混沌映射在迭代后期容易衰退为周期序列。为了进一步提升Tent混沌映射策略初始种群解的质量,利用改进后的Tent混沌映射进行种群初始化操作,进一步提升算法求解效率。
2023-11-15 23:01:12 2134 6
原创 【Matlab群体智能算法第四期】基于Tent混沌映射、自适应t分布和动态选择策略的TDPSO算法(含完整matlab代码)
该篇文章基于上述改进方向的基础上,针对群体智能算法中的种群更新迭代部分进行改进讲解,本次主要介绍基于Tent混沌映射、自适应t分布和动态选择策略的改进粒子群优化算法。采用自适应t分布算法能够对种群粒子的位置进行扰动,提高算法的收敛速度。同时,将算法迭代次数iter作为自适应t分布的自由度参数,这使得算法在迭代前期具有较好的全局开发能力,在迭代后期具有良好的局部探索能力,极大的提高了算法的收敛速度及求解效率。
2023-11-07 00:19:48 2828 4
原创 【Matlab群体智能算法第三期】基于Tent混沌映射的TPSO算法(含完整matlab代码)
混沌映射特别适用于优化算法的初始化种群,用混沌映射代替随机参数使得算法能够在搜索空间中生成具有良好多样性的初始解。高质量的初始种群对算法的收敛速度和求解精度等性能有很大的帮助。
2023-11-01 00:36:02 3959 22
原创 【Matlab群体智能算法第二期】基于反向学习的改进粒子群算法(含matlab代码)
根据概率论相关理论,在没有先验知识优化问题的情况下,相较于引入两个独立的随机解,一个随机解与其对应的反向解更有可能出现在全局最优解附近,因此反向学习策略具有加速算法收敛的潜能。通过测试函数,分别对比改进前后算法的适应度函数值,验证算法改进后的寻优能力及算法求解的稳定性。
2023-10-26 22:47:39 4094 9
原创 【Matlab群体智能算法第一期】粒子群算法及其变体(一)
捕食过程的最终目的就是找到搜索区间内的食物,需要通过实时共享自己当前的位置追随当前的最优粒子,也就是与最优值适应度最高的个体,这样就能快速高效地找到食物。假设在一片空间内,固定一块食物的位置,鸟群事先并不知晓其存放地点,他们随机搜索食物,因此它们需要通过不断更新自己的速度和位置来靠近食物邻近的那只鸟以获得这块固定的食物。在传统粒子群算法中,其主要分为两大部分,分别为粒子种群初始化及种群位置的更新。粒子群算法在种群初始化后,对初始种群进行排序,筛选出当前种群下粒子群算法最优适应度值及所对应的粒子解的位置。
2023-07-11 23:42:27 2041 5
基于BiLSTM网络的风速预测
2024-06-03
基于GRU网络的风速预测
2024-06-03
基于LSTM网络的风速预测
2024-06-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人