【Matlab群体智能算法第四期】基于Tent混沌映射、自适应t分布和动态选择策略的TDPSO算法(含完整matlab代码)

0.前言

        上一篇文章主要对基于Tent混沌映射的改进粒子群算法原理及matlab代码进行讲解,并将改进后粒子群算法的寻优能力进行测试。

        该篇文章基于上述改进方向的基础上,针对群体智能算法中的种群更新迭代部分进行改进讲解,本次主要介绍基于Tent混沌映射、自适应t分布和动态选择策略的改进粒子群优化算法。Tent混沌映射原理及matlab代码见上期,链接如下:https://blog.csdn.net/hbdlhy/article/details/134151702?spm=1001.2014.3001.5502

1.自适应t分布策略原理及matlab代码

        采用自适应t分布算法能够对种群粒子的位置进行扰动,提高算法的收敛速度。同时,将算法迭代次数iter作为自适应t分布的自由度参数,这使得算法在迭代前期具有较好的全局开发能力,在迭代后期具有良好的局部探索能力,极大的提高了算法的收敛速度及求解效率。自适应t分布策略粒子位置更新方式如下:

X_{i}^{t+1}=X_{i}^{t}+X_{i}^{t}\cdot t(iter)

式中:X_{i}^{t+1}为自适应t分布扰动后种群位置,X_{i}^{t}为种群i在第t次迭代式的位置,t(iter)为以种群迭代次数为自由度参数的自适应t分布函数。

        采用上述公式进行自适应t分布对种群位置扰动更新后,既充分利用了当前位置信息,又增加了随机干扰信息,有利于算法跳出局部最优.而随着迭代次数的增加,t分布逐渐向高斯分布靠拢,有利于增强算法的收敛速度。

        基于上述理论,自适应t分布策略的matlab代码如下所示:

function best_x=mult_t_random(x,df,Lb,Ub,p)
%x为扰动前种群粒子的位置
%df为t分布的自由度参数
%Lb为种群位置下限
%Ub为种群位置上限
%P为动态选择概率
%自适应t分布变异
if rand > p
    x_tb = x + x.*trnd(df); %基于迭代次数的t分布变异
    %边界处理
    x_tb(x_tb>Ub) = Ub(x_tb>Ub);
    x_tb(x_tb<Lb) = Lb(x_tb<Lb);
    %粒子位置选择
    fitvalue_old = fitness_obl(x);
    fitvalue_tb = fitness_obl(x_tb);
    if fitvalue_tb <fitvalue_old
        best_x = x_tb;
    else
        best_x = x;
    end
else
    best_x=x;
end

% %粒子边界约束检查
I=best_x<Lb;
best_x(I)=Lb(I);
U=best_x>Ub;
best_x(U)=Ub(U);
end

2.动态选择概率原理及matlab代码

        采用上述自适应t分布变异算子,能够很大程度上提升算法的寻优性能,但是若无差别的对每次迭代中的所有个体使用,一方面会增加算法的计算时间,另一方面不利于发挥原算法本身的特点。针对这一现象,动态选择概率p能够调节自适应t分布变异算子的使用,减缓该现象对算法寻优能力的影响,动态选择概率策略具体公式如下:

p=w_{1}-w_{2}\times (maxiter-iter)/maxiter

式中:maxiter为最大 迭代次数,iter为当前迭代次数,w_{1}决定了动态选择概率的上限,w_{2}决定了动态选择概率的变化幅度,通过查阅相关文献,当w_{1}=0.5w_{2}=0.1时,调节作用最优。

        动态选择概率p使得算法在迭代前期有较大概率利用自适应t分布变异算子对种群的位置进行扰动,改善原算法在迭代初期就存在收敛于最优解得倾向;同时在迭代后期,充分发挥原算法良好的局部开发能力,并以较小概率的t分布变异作为补充,提升算法的收敛速度。

        基于上述原理及公式,matlab代码如下:

%% 动态选择策略
%w1=0.5;%动态选择概率的上限
%w2=0.1;%动态选择概率的变化幅度
%MaxDT为最大迭代次数
%iter为算法当前迭代次数
p=w1-w2*(MaxDT-iter)/MaxDT;%自适应t分布变异算子

3.基于Tent混沌映射、自适应t分布和动态选择策略的改进粒子群优化算法

        结合上述种群初始化及更新位置改进策略,基于Tent混沌映射、自适应t分布和动态选择策略的改进粒子群优化算法matlab代码如下:

%% 基于Tent混沌映射、自适应t分布和动态选择策略的改进粒子群优化算法主程序
clc;
clear all;
close all
%% 算法基本参数设置
c1=2; %学习因子1
c2=2;%学习因子2
w=0.7;%惯性权重
MaxDT=500;%最大迭代次数
D=3;%搜索空间维数(未知数个数)
N=30;%初始化群体个体数目
Lb=[-100,-100,-100];%种群解的下限
Ub=[100,100,100];%种群解的上限
Vmax=[1,1,1];%速度上限
Vmin=[-1,-1,-1];%速度下限
w1=0.5;%动态选择概率的上限
w2=0.1;%动态选择概率的变化幅度
a=0.5;%Tent混沌系数,0~1之间
Best_f=[];pop=[];
%% 基于Tent混沌映射的种群初始化
for L=1:N    
    pop(L,:) = Tent_int(D,a,Lb,Ub);
    Best_f(1,L)=fitness_obl(pop(L,:));
end
V=rand(N,D);
%计算各个粒子的适应度值并初始化Pi和Pg
[fitnessgbest bestindex]=min(Best_f);
gbest=pop(bestindex,:);
pbest=pop;
fitnesspbest=Best_f;
 
%% 粒子群算法更新迭代部分
for iter=1:MaxDT
    %动态选择策略
    p=w1-w2*(MaxDT-iter)/MaxDT;%自适应t分布变异算子
    %进入种群更新
    for j=1:N
        %种群更新
        V(j,:)=w*V(j,:)+c1*rand*(pbest(j,:)-pop(j,:))+c2*rand*(gbest-pop(j,:));
        %更新速度边界检查
        I=V(j,:)<Vmin;
        V(j,I)=Vmin(I);
        U=V(j,:)>Vmax;
        V(j,U)=Vmax(U);
        pop(j,:)=pop(j,:)+V(j,:);
        %基于自适应t分布变异策略位置更新
        pop(j,:)=mult_t_random(pop(j,:),iter,Lb,Ub,p);
        %粒子边界检查
        PI=pop(j,:)<Lb;
        pop(j,PI)=Lb(PI);
        PU=pop(j,:)>Ub;
        pop(j,PU)=Ub(PU);
        %计算更新后种群的适应度函数值     
        Best_f(j)=fitness_obl(pop(j,:));
  
       %个体极值更新
       if Best_f(j)<fitnesspbest(j)
            pbest(j,:)=pop(j,:);
            fitnesspbest(j)=Best_f(j);
       end
 
       %全局极值更新
       if Best_f(j)<fitnessgbest
           gbest=pop(j,:);
           fitnessgbest=Best_f(j);  
       end
       
    end
   %记录粒子全局最优解
   Fgbest(iter)=fitnessgbest;
   
end
%% 结果可视化
figure
plot(Fgbest)
title(['适应度曲线 ' '终止次数=' num2str(MaxDT)]);
xlabel('进化代数');
ylabel('适应度')
end

        基于上述matlab代码,利用测试函数fitness_obl,进行算法性能对比,测试函数代码如下:

function f=fitness_obl(x)

f=sum((x+0.5).^2);

4.改进PSO算法性能对比

        通过第3节中目标函数,结合前三期PSO算法求解效率进行对比,通过对上述目标函数进行多次对比,记录各算法目标函数的最大值、最小值及均值。改进后的TDPSO算法适应度曲线如下所示:

图1 基于Tent混沌映射、自适应t分布和动态选择策略的改进粒子群算法适应度曲线

        根据上述结果可以看出,该算法能够在极短的时间内实现最优目标函数值求解,极大的提升了算法的求解速度及求解效率。

        为了进一步对比改进后该算法的求解性能,不同改进方向下,算法测试函数的适应度函数值如下:

运行次数基于混沌映射与自适应t分布变异的改进PSO基于反向学习改进后标准粒子群算法基于Tent映射改进后
103.36E-310.08313.71E-29
23.08E-331.82E-290.05475.55E-31
301.85E-320.02943.24E-28
42.47E-322.74E-290.01192.26E-28
51.85E-323.08E-330.04771.02E-28
602.28E-290.03993.00E-28
707.67E-310.04593.73E-29
802.90E-310.02358.03E-28
92.77E-321.26E-310.00434.35E-29
1001.39E-310.05328.26E-30
均值7.39557E-337.01E-300.039361.88215E-28
最小值03.08E-330.00435.54668E-31
最大值2.77334E-322.74E-290.08318.03128E-28

        根据上述结果能够发现,采用自适应t分布和动态选择策略后极大的提升了算法的求解能力及鲁棒性,在同条件运行10次的情况下,基于Tent混沌映射、自适应t分布和动态选择策略的改进粒子群优化算法具有更高的精度及求解效率。

5.结束语

本博客在编写过程中主要参考文献为:

[1]张伟康,刘升.自适应t分布与黄金正弦改进的麻雀搜索算法及其应用[J].微电子学与计算机,2022,39(03):17-24.

        感谢大家耐心阅读,本文代码改进部分均为作者自身复现,谢绝转载,严禁以此进行二次售卖,后续更新方向为其余种群初始化改进策略及种群更新策略,及白鲸优化算法原理及相应变体等。

 作者主要更新方向为:

(1)智能算法复现及改进;

(2)微电网/综合能源系统容量配置、优化调度等方向

(3)时间序列预测(机器学习、深度学习方向)

欢迎大家相互交流,另作者水平有限,难免存在疏忽之处,若有错误请大家指正,谢谢。

该专题往期博文传送门:
1.【Matlab群体智能算法第一期】粒子群算法及其变体(一)_matlab群运算-CSDN博客

2.【Matlab群体智能算法第二期】基于反向学习的改进粒子群算法(含matlab代码)-CSDN博客

3.【Matlab群体智能算法第三期】基于Tent混沌映射的TPSO算法(含完整matlab代码)-CSDN博客

  • 13
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
1.版本:matlab2014/2019a/2021a,内运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化 #####
### 回答1: 自适应t分布是一种用于概率密度函数估计的统计模型,可以根据给定的数据自动调整其自由度参数以适应不同的数据分布。下面是一个用MATLAB编写的自适应t分布代码。 ```matlab % 自适应t分布 MATLAB代码 function [mu, sigma, nu] = adaptive_t_distribution(data, max_iter) % data: 输入数据向量 % max_iter: 最大迭代次数 % 初始化参数 mu = mean(data); sigma = std(data); nu = 2; % 初始化自由度参数 iter = 0; while iter < max_iter % 计算马氏距离 dist = abs(data - mu) / sigma; % 根据马氏距离计算新的自由度参数 nu_new = sum(dist < 1); % 如果自由度参数不再变化,则退出循环 if nu_new == nu break; end % 更新自由度参数 nu = nu_new; % 根据新的自由度参数重新计算均值和标准差 mu = mean(data(dist < 1)); sigma = std(data(dist < 1)); iter = iter + 1; end end ``` 该代码首先通过计算马氏距离来确定数据点是否属于自适应t分布的“中心”区域。然后,根据这些数据点的数量来更新自由度参数,并使用较小的子集重新计算均值和标准差。循环迭代过程将持续进行,直到自由度参数不再变化或达到最大迭代次数。 此代码提供了一个简单的方法来适应不同的数据分布,从而更准确地估计概率密度函数。你可以使用该代码自适应地调整t分布模型以适应不同的数据集。 ### 回答2: 自适应t分布是一种广义的t分布,它能够更好地拟合数据,尤其是在存在异常值或者数据集的尾部比较厚的情况下。以下是一个用Matlab编写的自适应t分布代码的简单实现: ```matlab function [mu, sigma, df] = adaptive_t_distribution(X, max_iter, epsilon) % X为输入数据 % max_iter为最大迭代次数 % epsilon为收敛阈值 % mu为自适应t分布的均值 % sigma为自适应t分布的标准差 % df为自适应t分布的自由度 % 初始化参数 mu = mean(X); sigma = std(X); df = length(X) - 1; % 迭代更新参数 for iter = 1:max_iter % 计算标准化的残差 res = (X - mu) / sigma; % 计算加权平方残差 weights = (df + 1) / (df + res.^2); % 更新自由度 df = sum(weights); % 更新均值和标准差 mu_new = sum(X .* weights) / df; sigma_new = sqrt(sum(weights .* (X - mu_new).^2) / df); % 判断是否收敛 if abs(mu_new - mu) < epsilon && abs(sigma_new - sigma) < epsilon break; end % 更新参数 mu = mu_new; sigma = sigma_new; end end ``` 这段代码实现了自适应t分布的均值、标准差和自由度的估计。在每轮迭代中,根据当前的参数估计计算标准化的残差,并根据残差进行加权。然后更新自由度、均值和标准差。重复这个过程直到收敛(即均值和标准差的变化很小)。最终得到的mu、sigma和df即为自适应t分布的参数估计结果。 需要注意的是,这只是一个简单的实现示例,实际应用中可能需要根据数据的特点和实际需求进行优化和改进。 ### 回答3: 自适应t分布模型是一种根据数据分布情况逐步调整自由度的统计模型。在MATLAB中,我们可以使用以下代码实现自适应t分布模型。 首先,我们需要导入数据并计算样本的均值和标准差。 ```matlab data = [1, 2, 3, 4, 5]; % 假设数据是1, 2, 3, 4, 5 mu = mean(data); % 计算均值 sigma = std(data); % 计算标准差 ``` 然后,我们可以通过拟合算法找到最佳的自适应t分布模型。 ```matlab fitdist(data, 'tLocationScale') % 拟合自适应t分布模型 ``` 上述代码将采用最小二乘法的拟合算法,找到满足数据分布的最佳参数。其中,'tLocationScale'表示使用自适应t分布模型进行拟合。 最后,我们可以使用拟合结果生成自适应t分布随机数。 ```matlab pd = fitdist(data, 'tLocationScale'); % 拟合自适应t分布模型 random_numbers = random(pd, 100); % 生成100个符合自适应t分布的随机数 ``` 上述代码将生成100个符合自适应t分布的随机数,并存储在random_numbers变量中。 综上所述,上述代码实现了自适应t分布模型的拟合和随机数生成。请注意,这只是一种基本的实现方法,具体的应用还需要根据数据的特点和需求进行相应的调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值