[BZOJ2946][Poi2000]公共串

[Poi2000]公共串

Description
给出几个由小写字母构成的单词,求它们最长的公共子串的长度。
任务:
l 读入单词
l 计算最长公共子串的长度
l 输出结果
Input
文件的第一行是整数 n,1<=n<=5,表示单词的数量。接下来n行每行一个单词,只由小写字母组成,单词的长度至少为1,最大为2000。
Output
仅一行,一个整数,最长公共子串的长度。
Sample Input
3
abcb
bca
acbc
Sample Output
2

Solution
和SPOJ那个一样

Code

#include <bits/stdc++.h>
using namespace std;

#define rep(i, l, r) for (int i = (l); i <= (r); i++)
#define per(i, r, l) for (int i = (r); i >= (l); i--)
#define MS(_) memset(_, 0, sizeof(_))
#define MP make_pair
#define PB push_back
inline void ckmax(int &x, int y){ if (x < y) x = y; }
inline void ckmin(int &x, int y){ if (x > y) x = y; }

const int INF = 0x7fffffff;
const int N = 200100;
char s[N];
int case_cnt,len[N], nxt[N][26], fa[N], d[N], t[N], f[N], mn[N];

struct sam{
    int root, last, cnt, LEN;
    sam() { cnt = 0; root = last = ++cnt; }
    inline void insert(int c){
        int np = ++cnt, p = last; last = np;
        mn[np] = len[np] = len[p]+1;
        for (; p && !nxt[p][c]; nxt[p][c] = np, p = fa[p]);
        if (!p) fa[np] = root;
        else if (len[nxt[p][c]] == len[p]+1) fa[np] = nxt[p][c];
        else{
            int nq = ++cnt, q = nxt[p][c]; mn[nq] = len[nq] = len[p]+1;
            memcpy(nxt[nq], nxt[q], sizeof nxt[q]); fa[nq] = fa[q];
            fa[q] = fa[np] = nq;
            for (; p && nxt[p][c] == q; nxt[p][c] = nq, p = fa[p]);
        }
    }
    inline void build(){ char s[N]; 
        scanf("%d",&case_cnt); case_cnt--;
        scanf("%s", s+1); LEN = strlen(s+1);
        rep(i, 1, LEN) insert(s[i]-'a');
    }
    inline void topsort(){
        rep(i, 1, cnt) d[len[i]]++;
        rep(i, 1, LEN) d[i] += d[i-1];
        rep(i, 1, cnt) t[d[len[i]]--] = i;
    }
    inline bool run(){
        scanf("%s", s+1);
        MS(f); int _len = strlen(s+1), nowlen = 0;
        for (int i = 1, p = root; i <= _len; i++){ int c = s[i]-'a';
            if (nxt[p][c]) { nowlen++; p = nxt[p][c]; }
            else{
                for (; p && !nxt[p][c]; p = fa[p]);
                if (!p) { p = root; nowlen = 0; }
                else { nowlen = len[p] + 1; p = nxt[p][c]; }
            }
            ckmax(f[p], nowlen);        
        }
        per(i, cnt, 1){ int now = t[i];
            ckmin(mn[now], f[now]); 
            ckmax(f[fa[now]], f[now]);
        }
        return true;
    }
}SAM;

int main(){
    SAM.build();
    SAM.topsort();
    for(int i=1;i<=case_cnt;i++)SAM.run();
    int ans = 0;
    rep(i, 1, SAM.cnt) ckmax(ans, mn[i]);
    printf("%d\n", ans);
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值