CV论文
hbhhhxs
这个作者很懒,什么都没留下…
展开
-
论文阅读:social lstm:Human Trajectory Prediction in Crowded Spaces
社会LSTM:拥挤空间中的人类轨迹预测学习笔记参考:study note: https://www.zybuluo.com/ArrowLLL/note/981714摘要:行人遵循不同的轨迹以避开障碍物并容纳行人。任何导航这样一个场景的自动驾驶车辆都应该能够预见到行人的未来位置并相应地调整其路径以避免碰撞。轨迹预测的这个问题可以被视为序列生成任务,我们有兴趣根据他们过去的位置预测人的未来轨迹...原创 2019-05-15 22:23:30 · 7928 阅读 · 3 评论 -
论文阅读:Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
转载自凌空的桨https://blog.csdn.net/baidu_36669549/article/details/85986628翻译稿---链接参考---Social GAN:利用GAN来帮助预测行人运动轨迹 或者 http://grayxu.cn/2018/10/06/Social-GAN/源码---sgan可视化--Visual-of-Social-G...转载 2019-05-15 22:23:21 · 5272 阅读 · 2 评论 -
论文阅读:SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints
苏菲:一个专注于预测符合社会和物理约束的路径的GAN论文链接:https://arxiv.org/pdf/1806.01482.pdf摘要:本文讨论了场景中多个交互代理的路径预测问题,这是许多自动驾驶平台(如自动驾驶汽车和社交机器人)的关键步骤。我们介绍SoPhie;基于生成对抗网络(GAN)的可解释框架,其利用场景的图像来利用两个信息源,场景中所有代理的路径历史以及场景上下文信息。要预测...原创 2019-05-15 22:23:48 · 2081 阅读 · 1 评论 -
论文阅读:CIDNN:Encoding Crowd Interaction with Deep Neural Network for Pedestrian Trajectory Prediction
摘要:由于人类的复杂性,行人轨迹预测是一项具有挑战性的任务。在本文中,我们通过考虑每个行人的运动信息及其与人群的互动,在深度学习框架内解决问题。具体地,在深度学习中的剩余学习的推动下,我们建议顺序地预测每个行人的相邻帧之间的位移。为了预测这种位移,我们设计了一个人群交互深度神经网络(CIDNN),它考虑了不同行人对目标行人位移预测的不同重要性。特别,我们使用LSTM为所有行人建模运动信息,并使...原创 2020-12-01 22:11:52 · 341 阅读 · 0 评论 -
论文阅读:CSRNet
https://www.jianshu.com/p/6f734a1da3b0转载 2019-09-05 16:55:18 · 350 阅读 · 0 评论