第十五章 奇异值分解(SVD)

第十五章 奇异值分解(SVD)

  • 相关英文释义
    1. 奇异值分解(singular value decomposition)
    2. 正交矩阵 ( orthogonal matrix)
    3. 矩形对角矩阵 ( rectangular diagonal matrix)
    4. 奇异值 ( singular value )
    5. 左奇异向量 (left singular vector)
    6. 右奇异向量 (right singular vector)
    7. 完全奇异值分解(full singular value decomposition)
    8. 紧奇异值分解 ( compact singular value decomposition)
    9. 截断奇异值分解 ( truncated singular value decomposition)

奇异值分解的定义

  • 定义 15.1 (奇异值分解、完全奇异值分解) 矩阵的奇异值分解是指, 将一个非零的 m × n m \times n m×n 实矩阵 A , A ∈ R m × n A, A \in \mathbf{R}^{m \times n} A,ARm×n, 表示为以下三个实矩阵乘积形式的运算 (1), 即进行矩阵的因子分解:
    A = U Σ V T A=U \Sigma V^{\mathrm{T}} A=UΣVT
    其中 U U U m m m 阶正交矩阵 , V V V n n n 阶正交矩阵, Σ \Sigma Σ 是由降序排 列的非负的对角线元素组成的 m × n m \times n m×n 矩形对角矩阵 , 满足
    U U T = I V V T = I Σ = diag ⁡ ( σ 1 , σ 2 , ⋯   , σ p ) σ 1 ⩾ σ 2 ⩾ ⋯ ⩾ σ p ⩾ 0 p = min ⁡ ( m , n ) \begin{aligned} &U U^{\mathrm{T}}=I \\ &V V^{\mathrm{T}}=I \\ &\Sigma=\operatorname{diag}\left(\sigma_1, \sigma_2, \cdots, \sigma_p\right) \\ &\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_p \geqslant 0 \\ &p=\min (m, n) \end{aligned} UUT=IVVT=IΣ=diag(σ1,σ2,,σp)σ1σ2σp0p=min(m,n)
    U Σ V T U \Sigma V^{\mathrm{T}} UΣVT 称为矩阵 A A A 的奇异值分解 σ i \sigma_i σi 称为矩阵 A A A 的奇异值 , U U U 的列向量称为左奇异向量 , V V V 的列向量称为右奇异向量 。

  • 注意奇异值分解不要求矩阵A是方阵,矩阵的奇异值分解可以看作是方阵对角化的推广。


奇异值分解的基本定理(完全奇异值分解)

  • 定理 15.1 (奇异值分解基本定理) A A A 为一 m × n m \times n m×n 实矩阵, A ∈ R m × n A \in \mathbf{R}^{m \times n} ARm×n, 则 A A A 的奇异值分解存在
    A = U Σ V T A=U \Sigma V^{\mathrm{T}} A=UΣVT
    其中 U U U m m m 阶正交矩阵, V V V n n n 阶正交矩阵, Σ \Sigma Σ m × n m \times n m×n 矩形对角矩阵, 其对角线 元素非负, 且按降序排列。

  • 证明

    证明是构造性的, 对给定的矩阵 A A A, 构造出其奇异值分解的各个矩阵。为 了方便,不妨假设 m ⩾ n m \geqslant n mn, 如果 m < n m<n m<n ,将A转置,
    A T = U Σ V T ⇒ A = ( U Σ V T ) T ⇒ A = V Σ U T \begin{aligned} A^T & = U \Sigma V^{\mathrm{T}} \\ \Rightarrow A &=(U \Sigma V^{\mathrm{T}})^T\\ \Rightarrow A &= V \Sigma U^{\mathrm{T}} \end{aligned} ATAA=UΣVT=(UΣVT)T=VΣUT
    证明仍然成立。

    证明由三步完成。

    1. 确定 V V V Σ \Sigma Σ
      首先构造 n n n 阶正交实矩阵 V V V m × n m \times n m×n 矩形对角实矩阵 Σ 。  \Sigma_{\text {。 }} Σ 
      矩阵 A A A m × n m \times n m×n 实矩阵, 则矩阵 A T A A^{\mathrm{T}} A ATA n n n 阶实对称矩阵。因而 A T A A^{\mathrm{T}} A ATA 的特征值都 是实数, 并且存在一个 n n n 阶正交实矩阵 V V V 实现 A T A A^{\mathrm{T}} A ATA 的对角化, 使得 V T ( A T A ) V = Λ V^{\mathrm{T}}\left(A^{\mathrm{T}} A\right) V=\Lambda VT(ATA)V=Λ 成立, 其中 Λ \Lambda Λ n n n 阶对角矩阵, 其对角线元素由 A T A A^{\mathrm{T}} A ATA 的特征值组成。
      而且, A T A A^{\mathrm{T}} A ATA 的特征值都是非负的。事实上, 令 λ \lambda λ A T A A^{\mathrm{T}} A ATA 的一个特征值, x x x 是对 应的特征向量, 则
      ∥ A x ∥ 2 = x T A T A x = λ x T x = λ ∥ x ∥ 2 \|A x\|^2=x^{\mathrm{T}} A^{\mathrm{T}} A x=\lambda x^{\mathrm{T}} x=\lambda\|x\|^2 Ax2=xTATAx=λxTx=λx2
      于是
      λ = ∥ A x ∥ 2 ∥ x ∥ 2 ⩾ 0 \lambda=\frac{\|A x\|^2}{\|x\|^2} \geqslant 0 λ=x2Ax20
      可以假设正交矩阵 V V V 的列的排列使得对应的特征值形成降序排列
      λ 1 ⩾ λ 2 ⩾ ⋯ ⩾ λ n ⩾ 0 \lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0 λ1λ2λn0
      计算特征值的平方根 (实际就是矩阵 A A A 的奇异值)
      σ j = λ j , j = 1 , 2 , ⋯   , n \sigma_j=\sqrt{\lambda_j}, \quad j=1,2, \cdots, n σj=λj ,j=1,2,,n
      设矩阵 A A A 的秩是 r , rank ⁡ ( A ) = r r, \operatorname{rank}(A)=r r,rank(A)=r, 则矩阵 A T A A^{\mathrm{T}} A ATA 的秩也是 r r r 。由于 A T A A^{\mathrm{T}} A ATA 是对称矩阵, 它的秩等于正的特征值的个数, 所以
      λ 1 ⩾ λ 2 ⩾ ⋯ ⩾ λ r > 0 , λ r + 1 = λ r + 2 = ⋯ = λ n = 0 \lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_r>0, \quad \lambda_{r+1}=\lambda_{r+2}=\cdots=\lambda_n=0 λ1λ2λr>0,λr+1=λr+2==λn=0
      对应地有
      σ 1 ⩾ σ 2 ⩾ ⋯ ⩾ σ r > 0 , σ r + 1 = σ r + 2 = ⋯ = σ n = 0 \sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r>0, \quad \sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_n=0 σ1σ2σr>0,σr+1=σr+2==σn=0

      V 1 = [ ν 1 ν 2 ⋯ ν r ] , V 2 = [ ν r + 1 ν r + 2 ⋯ ν n ] V_1=\left[\begin{array}{llll}\nu_1 & \nu_2 & \cdots & \nu_r\end{array}\right], \quad V_2=\left[\begin{array}{llll}\nu_{r+1} & \nu_{r+2} & \cdots & \nu_n\end{array}\right] V1=[ν1ν2νr],V2=[νr+1νr+2νn]

      其中 ν 1 , ⋯   , ν r \nu_1, \cdots, \nu_r ν1,,νr A T A A^{\mathrm{T}} A ATA 的正特征值对应的特征向量, ν r + 1 , ⋯   , ν n \nu_{r+1}, \cdots, \nu_n νr+1,,νn 为 0 特征值对应的 特征向量, 则
      V = [ V 1 V 2 ] V=\left[\begin{array}{ll} V_1 & V_2 \end{array}\right] V=[V1V2]
      这就是矩阵 A A A 的奇异值分解中的 n n n 阶正交矩阵 V V V
      Σ 1 = [ σ 1 σ 2 ⋱ σ r ] \Sigma_1=\left[\begin{array}{cccc} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_r \end{array}\right] Σ1= σ1σ2σr
      Σ 1 \Sigma_1 Σ1 是一个 r r r 阶对角矩阵, 其对角线元素为按降序排列的正的 σ 1 , ⋯   , σ r \sigma_1, \cdots, \sigma_r σ1,,σr, 于是 m × n m \times n m×n 矩形对角矩阵 Σ \Sigma Σ 可以表为
      Σ = [ Σ 1 0 0 0 ] \Sigma=\left[\begin{array}{cc} \Sigma_1 & 0 \\ 0 & 0 \end{array}\right] Σ=[Σ1000]
      这就是矩阵 A A A​ 的奇异值分解中的 m × n m \times n m×n​ 矩形对角矩阵 Σ 。  \Sigma_{\text {。 }} Σ 
      下面推出后面要用到的一个公式。在式 V = [ V 1 V 2 ] V=\left[\begin{array}{ll} V_1 & V_2 \end{array}\right] V=[V1V2]​ 中, V 2 V_2 V2​ 的列向量是 A T A A^{\mathrm{T}} A ATA​ 对应于特

      征值为 0 的特征向量。因此
      A T A v j = 0 , j = r + 1 , ⋯   , n A^{\mathrm{T}} A v_j=0, \quad j=r+1, \cdots, n ATAvj=0,j=r+1,,n
      于是, V 2 V_2 V2 的列向量构成了 A T A A^{\mathrm{T}} A ATA 的零空间 N ( A T A ) N\left(A^{\mathrm{T}} A\right) N(ATA), 而 N ( A T A ) = N ( A ) N\left(A^{\mathrm{T}} A\right)=N(A) N(ATA)=N(A) 。所以 V 2 V_2 V2 的 列向量构成 A A A 的零空间的一组标准正交基。因此,
      A V 2 = 0 A V_2=0 AV2=0
      由于 V V V​ 是正交矩阵, 由式 V = [ V 1 V 2 ] V=\left[\begin{array}{ll} V_1 & V_2 \end{array}\right] V=[V1V2] 可得
      I = V V T = V 1 V 1 T + V 2 V 2 T A = A I = A V 1 V 1 T + A V 2 V 2 T = A V 1 V 1 T \begin{gathered} I=V V^{\mathrm{T}}=V_1 V_1^{\mathrm{T}}+V_2 V_2^{\mathrm{T}} \\ A=A I=A V_1 V_1^{\mathrm{T}}+A V_2 V_2^{\mathrm{T}}=A V_1 V_1^{\mathrm{T}} \end{gathered} I=VVT=V1V1T+V2V2TA=AI=AV1V1T+AV2V2T=AV1V1T

    2. 确定 U U U
      接着构造 m m m 阶正交实矩阵 U U U

      u j = 1 σ j A v j , j = 1 , 2 , ⋯   , r U 1 = [ u 1 u 2 ⋯ u r ] \begin{gathered} u_j=\frac{1}{\sigma_j} A v_j, \quad j=1,2, \cdots, r \\ U_1=\left[\begin{array}{llll} u_1 & u_2 & \cdots & u_r \end{array}\right] \end{gathered} uj=σj1Avj,j=1,2,,rU1=[u1u2ur]
      则有
      A V 1 = U 1 Σ 1 A V_1=U_1 \Sigma_1 AV1=U1Σ1
      U 1 U_1 U1 的列向量构成了一组标准正交集, 因为
      u i T u j = ( 1 σ i v i T A T ) ( 1 σ j A v j ) = 1 σ i σ j v i T ( A T A v j ) = σ j σ i v i T v j = δ i j , i = 1 , 2 , ⋯   , r ; j = 1 , 2 , ⋯   , r \begin{aligned} u_i^{\mathrm{T}} u_j &=\left(\frac{1}{\sigma_i} v_i^{\mathrm{T}} A^{\mathrm{T}}\right)\left(\frac{1}{\sigma_j} A v_j\right) \\ &=\frac{1}{\sigma_i \sigma_j} v_i^{\mathrm{T}}\left(A^{\mathrm{T}} A v_j\right) \\ &=\frac{\sigma_j}{\sigma_i} v_i^{\mathrm{T}} v_j \\ &=\delta_{i j}, \quad i=1,2, \cdots, r ; \quad j=1,2, \cdots, r \end{aligned} uiTuj=(σi1viTAT)(σj1Avj)=σiσj1viT(ATAvj)=σiσjviTvj=δij,i=1,2,,r;j=1,2,,r
      由式 18 和式 19可知, u 1 , u 2 , ⋯   , u r u_1, u_2, \cdots, u_r u1,u2,,ur 构成 A A A 的列空间的一组标准正交基, 列空间的维数为 r r r 。如果将 A A A 看成是从 R n \mathbf{R}^n Rn R m \mathbf{R}^m Rm 的线性变换, 则 A A A 的列空间和 A A A 的值域 R ( A ) R(A) R(A) 是相同的。因此 u 1 , u 2 , ⋯   , u r u_1, u_2, \cdots, u_r u1,u2,,ur 也是 R ( A ) R(A) R(A) 的一组标准正交基。

      R ( A ) ⊥ R(A)^{\perp} R(A) 表示 R ( A ) R(A) R(A) 的正交补, 则有 R ( A ) R(A) R(A) 的维数为 r , R ( A ) ⊥ r, R(A)^{\perp} r,R(A) 的维数为 m − r m-r mr, 两者的维数之和等于 m m m 。而且有 R ( A ) ⊥ = N ( A T ) R(A)^{\perp}=N\left(A^{\mathrm{T}}\right) R(A)=N(AT) 成立。(1)
      { u r + 1 , u r + 2 , ⋯   , u m } \left\{u_{r+1}, u_{r+2}, \cdots, u_m\right\} {ur+1,ur+2,,um} N ( A T ) N\left(A^{\mathrm{T}}\right) N(AT) 的一组标准正交基, 并令
      U 2 = [ u r + 1 u r + 2 ⋯ u m ] U = [ U 1 U 2 ] \begin{aligned} &U_2=\left[\begin{array}{llll} u_{r+1} & u_{r+2} & \cdots & u_m \end{array}\right] \\ &U=\left[\begin{array}{ll} U_1 & U_2 \end{array}\right] \end{aligned} U2=[ur+1ur+2um]U=[U1U2]
      u 1 , u 2 , ⋯   , u m u_1, u_2, \cdots, u_m u1,u2,,um 构成了 R m \mathbf{R}^m Rm 的一组标准正交基。因此, U U U m m m 阶正交矩阵, 这就是 矩阵 A A A 的奇异值分解中的 m m m 阶正交矩阵。

    3. 证明 U Σ V T = A U \Sigma V^{\mathrm{T}}=A UΣVT=A
      由式 (15.6)、式 (15.7)、式 (15.11)、式 (15.14) 和式 (15.16) 得
      U Σ V T = [ U 1 U 2 ] [ Σ 1 0 0 0 ] [ V 1 T V 2 T ] = U 1 Σ 1 V 1 T = A V 1 V 1 T = A \begin{aligned} U \Sigma V^{\mathrm{T}} &=\left[\begin{array}{ll} U_1 & U_2 \end{array}\right]\left[\begin{array}{cc} \Sigma_1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{c} V_1^{\mathrm{T}} \\ V_2^{\mathrm{T}} \end{array}\right] \\ &=U_1 \Sigma_1 V_1^{\mathrm{T}} \\ &=A V_1 V_1^{\mathrm{T}} \\ &=A \end{aligned} UΣVT=[U1U2][Σ1000][V1TV2T]=U1Σ1V1T=AV1V1T=A

    至此证明了矩阵 A A A 存在奇异值分解。


紧奇异值分解与截 断奇异值分解

  • 上述的称为矩阵的完全奇异值分解,实际常用的是奇异值分解的紧凑形式截断形式紧奇异值分解是与原始矩阵等秩的奇异值分解, 截断奇异值分解是比原始矩阵低秩的奇异值分解。

  • 紧奇异值分解
    定义 15.2 设有 m × n m \times n m×n 实矩阵 A A A, 其秩为 rank ⁡ ( A ) = r , r ⩽ min ⁡ ( m , n ) \operatorname{rank}(A)=r, r \leqslant \min (m, n) rank(A)=r,rmin(m,n), 则称 U r Σ r V r T U_r \Sigma_r V_r^{\mathrm{T}} UrΣrVrT A A A 的紧奇异值分解, 即
    A = U r Σ r V r T A=U_r \Sigma_r V_r^{\mathrm{T}} A=UrΣrVrT

    其中 U r U_r Ur m × r m \times r m×r 矩阵, V r V_r Vr n × r n \times r n×r 矩阵, Σ r \Sigma_r Σr r r r 阶对角矩阵; 矩阵 U r U_r Ur 由完全奇异 值分解中 U U U 的前 r r r 列、矩阵 V r V_r Vr V V V 的前 r r r 列、矩阵 Σ r \Sigma_r Σr Σ \Sigma Σ 的前 r r r 个对角线元素 得到。紧奇异值分解的对角矩阵 Σ r \Sigma_r Σr 的秩与原始矩阵 A A A 的秩相等。

  • 截断奇异值分解
    在矩阵的奇异值分解中, 只取最大的 k k k 个奇异值 ( k < r , r k<r, r k<r,r 为矩阵的秩) 对应的 部分, 就得到矩阵的截断奇异值分解。实际应用中提到矩阵的奇异值分解时, 通常指 截断奇异值分解
    定义 15.3 15.3 15.3 A A A m × n m \times n m×n 实矩阵, 其秩 rank ⁡ ( A ) = r \operatorname{rank}(A)=r rank(A)=r, 且 0 < k < r 0<k<r 0<k<r, 则称 U k Σ k V k T U_k \Sigma_k V_k^{\mathrm{T}} UkΣkVkT 为矩阵 A A A 的截断奇异值分解 。
    A ≈ U k Σ k V k T A \approx U_k \Sigma_k V_k^{\mathrm{T}} AUkΣkVkT
    其中 U k U_k Uk m × k m \times k m×k 矩阵, V k V_k Vk n × k n \times k n×k 矩阵, Σ k \Sigma_k Σk k k k 阶对角矩阵; 矩阵 U k U_k Uk 由完全奇异值分解中 U U U 的前 k k k 列、矩阵 V k V_k Vk V V V 的前 k k k 列、矩阵 Σ k \Sigma_k Σk Σ \Sigma Σ 的前 k k k 个对角线元素 得到. 对角矩阵 Σ k \Sigma_k Σk 的秩比原始矩阵 A A A 的秩低。


奇异值分解的计算步骤

  • 给定 m × n m \times n m×n 矩阵 A A A, 奇异值分解的计算过程分为四步骤。

    1. A T A A^{\mathrm{T}} A ATA 的特征值和特征向量。

      计算对称矩阵 W = A T A W=A^{\mathrm{T}} A W=ATA
      求解特征方程
      ( W − λ I ) x = 0 (W-\lambda I) x=0 (WλI)x=0
      得到特征值 λ i \lambda_i λi, 并将特征值由大到小排列
      λ 1 ⩾ λ 2 ⩾ ⋯ ⩾ λ n ⩾ 0 \lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0 λ1λ2λn0
      将特征值 λ i ( i = 1 , 2 , ⋯   , n ) \lambda_i(i=1,2, \cdots, n) λi(i=1,2,,n) 代入特征方程求得对应的特征向量。

    2. n n n 阶正交矩阵 V V V

      将特征向量单位化, 得到单位特征向量 v 1 , v 2 , ⋯   , v n v_1, v_2, \cdots, v_n v1,v2,,vn, 构成 n n n 阶正交矩阵 V V V :
      V = [ v 1 v 2 ⋯ v n ] V=\left[\begin{array}{llll} v_1 & v_2 & \cdots & v_n \end{array}\right] V=[v1v2vn]

    3. m × n m \times n m×n 对角矩阵 Σ \Sigma Σ

      计算 A A A 的奇异值
      σ i = λ i , i = 1 , 2 , ⋯   , n \sigma_i=\sqrt{\lambda_i}, \quad i=1,2, \cdots, n σi=λi ,i=1,2,,n
      构造 m × n m \times n m×n 矩形对角矩阵 Σ \Sigma Σ, 主对角线元素是奇异值, 其余元素是零,
      Σ = diag ⁡ ( σ 1 , σ 2 , ⋯   , σ n ) \Sigma=\operatorname{diag}\left(\sigma_1, \sigma_2, \cdots, \sigma_n\right) Σ=diag(σ1,σ2,,σn)

    4. m m m 阶正交矩阵U

      A A A 的前 r r r 个正奇异值, 令
      u j = 1 σ j A v j , j = 1 , 2 , ⋯   , r u_j=\frac{1}{\sigma_j} A v_j, \quad j=1,2, \cdots, r uj=σj1Avj,j=1,2,,r
      得到
      U 1 = [ u 1 u 2 ⋯ u r ] U_1=\left[\begin{array}{llll} u_1 & u_2 & \cdots & u_r \end{array}\right] U1=[u1u2ur]
      A T A^{\mathrm{T}} AT 的零空间的一组标准正交基 { u r + 1 , u r + 2 , ⋯   , u m } \left\{u_{r+1}, u_{r+2}, \cdots, u_m\right\} {ur+1,ur+2,,um}, 令
      U 2 = [ u r + 1 u r + 2 ⋯ u m ] U_2=\left[\begin{array}{llll} u_{r+1} & u_{r+2} & \cdots & u_m \end{array}\right] U2=[ur+1ur+2um]
      并令
      U = [ U 1 U 2 ] U=\left[\begin{array}{ll} U_1 & U_2 \end{array}\right] U=[U1U2]

    5. 得到奇异值分解
      A = U Σ V T A=U \Sigma V^{\mathrm{T}} A=UΣVT


奇异值分解的计算示例

  • 试求矩阵
    A = [ 1 1 2 2 0 0 ] A=\left[\begin{array}{ll} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{array}\right] A= 120120
    的奇异值分解。

  • 解:

    1. 矩阵 A T A A^{\mathrm{T}} A ATA特征值和特征向量

      求对称矩阵 A T A A^{\mathrm{T}} A ATA
      A T A = [ 1 2 0 1 2 0 ] [ 1 1 2 2 0 0 ] = [ 5 5 5 5 ] A^{\mathrm{T}} A=\left[\begin{array}{lll} 1 & 2 & 0 \\ 1 & 2 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{array}\right]=\left[\begin{array}{ll} 5 & 5 \\ 5 & 5 \end{array}\right] ATA=[112200] 120120 =[5555]
      特征值 λ \lambda λ 和特征向量 x x x 满足特征方程
      ( A T A − λ I ) x = 0 \left(A^{\mathrm{T}} A-\lambda I\right) x=0 (ATAλI)x=0
      得到齐次线性方程组
      { ( 5 − λ ) x 1 + 5 x 2 = 0 5 x 1 + ( 5 − λ ) x 2 = 0 \left\{\begin{array}{cc} (5-\lambda) x_1+ & 5 x_2=0 \\ 5 x_1+ & (5-\lambda) x_2=0 \end{array}\right. {(5λ)x1+5x1+5x2=0(5λ)x2=0
      该方程组有非零解的充要条件是
      ∣ 5 − λ 5 5 5 − λ ∣ = 0 \left|\begin{array}{cc} 5-\lambda & 5 \\ 5 & 5-\lambda \end{array}\right|=0 5λ555λ =0

      λ 2 − 10 λ = 0 \lambda^2-10 \lambda=0 λ210λ=0
      解此方程, 得矩阵 A T A A^{\mathrm{T}} A ATA 的特征值 λ 1 = 10 \lambda_1=10 λ1=10 λ 2 = 0 \lambda_2=0 λ2=0
      将特征值 λ 1 = 10 \lambda_1=10 λ1=10 代入线性方程组, 得到对应的单位特征向量
      v 1 = [ 1 2 1 2 ] v_1=\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}\right] v1=[2 12 1]
      同样得到特征值 λ 2 = 0 \lambda_2=0 λ2=0 对应的单位特征向量
      v 2 = [ 1 2 − 1 2 ] v_2=\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{array}\right] v2=[2 12 1]

    2. 求正交矩阵 V V V
      构造正交矩阵 V V V
      V = [ 1 2 1 2 1 2 − 1 2 ] V=\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array}\right] V=[2 12 12 12 1]

    3. 求对角矩阵 Σ \Sigma Σ
      奇异值为 σ 1 = λ 1 = 10 \sigma_1=\sqrt{\lambda_1}=\sqrt{10} σ1=λ1 =10 σ 2 = 0 \sigma_2=0 σ2=0 。构造对角矩阵
      Σ = [ 10 0 0 0 0 0 ] \Sigma=\left[\begin{array}{cc} \sqrt{10} & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right] Σ= 10 00000
      注意在 Σ \Sigma Σ 中要加上零行向量, 使得 Σ \Sigma Σ 能够与 U , V U, V U,V 进行矩阵乘法运算。

    4. 求正交矩阵 U U U
      基于 A A A 的正奇异值计算得到列向量 u 1 u_1 u1
      u 1 = 1 σ 1 A v 1 = 1 10 [ 1 1 2 2 0 0 ] [ 1 2 1 2 ] = [ 1 5 2 5 0 ] u_1=\frac{1}{\sigma_1} A v_1=\frac{1}{\sqrt{10}}\left[\begin{array}{ll} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{array}\right]\left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}\right]=\left[\begin{array}{c} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{array}\right] u1=σ11Av1=10 1 120120 [2 12 1]= 5 15 20
      列向量 u 2 , u 3 u_2, u_3 u2,u3 A T A^{\mathrm{T}} AT 的零空间 N ( A T ) N\left(A^{\mathrm{T}}\right) N(AT) 的一组标准正交基。为此, 求解以下线性 方程组
      A T x = [ 1 2 0 1 2 0 ] [ x 1 x 2 x 3 ] = [ 0 0 ] A^{\mathrm{T}} x=\left[\begin{array}{lll} 1 & 2 & 0 \\ 1 & 2 & 0 \end{array}\right]\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \end{array}\right] ATx=[112200] x1x2x3 =[00]

      x 1 + 2 x 2 + 0 x 3 = 0 x 1 = − 2 x 2 + 0 x 3 \begin{gathered} x_1+2 x_2+0 x_3=0 \\ x_1=-2 x_2+0 x_3 \end{gathered} x1+2x2+0x3=0x1=2x2+0x3
      分别取 ( x 2 , x 3 ) \left(x_2, x_3\right) (x2,x3) ( 1 , 0 ) (1,0) (1,0) ( 0 , 1 ) (0,1) (0,1), 得到 N ( A T ) N\left(A^{\mathrm{T}}\right) N(AT) 的基
      ( − 2 , 1 , 0 ) T , ( 0 , 0 , 1 ) T (-2,1,0)^{\mathrm{T}}, \quad(0,0,1)^{\mathrm{T}} (2,1,0)T,(0,0,1)T
      N ( A T ) N\left(A^{\mathrm{T}}\right) N(AT) 的一组标准正交基是
      u 2 = ( − 2 5 , 1 5 , 0 ) T , u 3 = ( 0 , 0 , 1 ) T u_2=\left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0\right)^{\mathrm{T}}, \quad u_3=(0,0,1)^{\mathrm{T}} u2=(5 2,5 1,0)T,u3=(0,0,1)T
      构造正交矩阵 U U U
      U = [ 1 5 − 2 5 0 2 5 1 5 0 0 0 1 ] U=\left[\begin{array}{ccc} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \end{array}\right] U= 5 15 205 25 10001

    5. 矩阵 A A A 的奇异值分解
      A = U Σ V T = [ 1 5 − 2 5 0 2 5 1 5 0 0 0 1 ] [ 10 0 0 0 0 0 ] [ 1 2 1 2 1 2 − 1 2 ] A=U \Sigma V^{\mathrm{T}}=\left[\begin{array}{ccc} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cc} \sqrt{10} & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array}\right] A=UΣVT= 5 15 205 25 10001 10 00000 [2 12 12 12 1]


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值