学习动态规划-最短路径

本文探讨了使用动态规划解决最短路径问题,包括最小路径和、三角形最小路径和以及下降路径最小和。通过状态转移方程,如dp[i][j] = min{dp[i-1][j], dp[i][j-1]} + matrix[i][j],解释了解题思路,并给出了相关题目链接。" 70881163,5857793,DSST移植到安卓手机实战,"['android开发', 'opencv', '追踪算法', 'C++', '移动开发']
摘要由CSDN通过智能技术生成

最短路径的问题相对简单,因为很容易拆分子问题并找到状态转移方程。对于当前结点,只需找到到达该节点的所有结点。

1,最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

来源:64. 最小路径和

解题思路:

对于当前结点,能够到达该结点的只能是 上 和 左 两个结点,例如下图中能够到达结点5的只能是结点1和结点3。

状态转移方程为:dp[i][j] = min{dp[i-1][j], dp[i][j-1]} + matrix[i][j]。

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        vector<vector<int>> dp = grid;
        int m = grid.size(), n = g
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值