向量:既有大小又有方向的量叫向量。
向量的模:向量的长度称为向量的模,用符号| |表示。
零向量:长度为0的向量
单位向量:长度为1的向量
平面中,设有向量a={x1, y1},向量b={x2, y2},则有
(1) 向量的加:a+b={x1+x2, y1+y2}
(2) 向量的减:a-b={x1-x2, y1-y2}
(3) 向量的点积(内积):a·b=|a|*|b|*cosθ=x1*x2 + y1*y2
(4) 向量的叉积(外积):a×b=x1*y2 - x2*y1
注:文中出现的*为数学乘法,×为叉积运算符。
三维中,设有向量a={x1, y1, z1},向量b={x2, y2, z2},
则a×b = {y1*z2-y2*z1, x2*z1-x1*z2, x1*y2-x2*y1}。
注:点用()表示,如(x, y, z),而向量用{}表示,如{x, y, z}。
设有点A=(x1, y1),点B=(x2, y2),则由A到B可组成向量AB={x2-x1, y2-y1}(AB=-BA)。
平面中有两个向量a和b:
a∥b当且仅当a×b=0(0向量)
a⊥b当且仅当a·b=0
叉积的一个非常重要性质是,可以通过它的符号判断两矢量相互之间的顺逆时针关系:
若a×b > 0 , 则a在b的顺时针方向。
若a×b < 0, 则a在b的逆时针方向。
若a×b = 0,则a和b共线,方向相同或相反。
