图像超分——SISR方法总结(阅读整理之一)(优缺点,方法详情长更)

SISR的主流算法主 要分为三类:基于插值的方法、基于重建的方法、基于学习的方法。

1·基于插值的SISR方法优点:快速和简单,缺点:存在精度缺陷):双三次插值、Lanczos重采样等
方法详情补充

2·基于重 构的SR方法优点:可以生成灵活和尖锐的细节,缺点:随着尺度因子的增加,许多基于重建的方法的性能 迅速下降,这些方法通常是耗时的。):梯度剖面先验等
方法详情补充

3·基于学习的方法优点:运算速度快,性能优异,显示出比基于重构和其他基于学习的方法 更大的优越性):马尔科夫随机场、邻域嵌入方法、稀疏编码方法、随机森林方法等。
方法详情补充

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值