【图像超分】论文精读:Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network(CARN)

本文深入解读了CARN(Cascading Residual Network)论文,这是一种针对图像超分辨率的深度学习模型,旨在解决深度学习方法计算量大的问题。CARN通过级联机制在残差网络上实现,结合局部和全局级联,以提高性能和效率。与现有模型相比,CARN在保持高性能的同时,显著减少了参数和操作数量,适合实际应用。CARN-M作为CARN的轻量级变体,通过使用高效的残差块和递归网络架构,进一步优化了速度和计算需求,实现在操作较少的情况下达到与先进方法相当的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值