LeetCode-1143-字符串-子序列-最长公共子序列

由小到大的动态规划。

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        //从底到上的动态规划
        int n = text1.length(), m = text2.length();
        if (0 == n*m)
            return 0;

        //dp[i][j]: text1[0...i-1]与text2[0...j-1]的最长公共子序列的长度
        //dp[0][j] 表示text1[0...-1]与text2[0...j-1]的最长公共子序列的长度,可理解为text1此时字符串长度为0;
        //dp[i][0] 有类似的含义
        //或者这样理解,dp[i][j]表示text1前i个元素与text2的前j个元素的最长公共子序列的长度
        vector<vector<int>> dp(n+1, vector<int>(m+1,0));
        //base case
        for (int i=0;i<=n;++i)
            dp[i][0] = 0;

        for (int i=0;i<=m;++i)
            dp[0][i] = 0;

        //状态转移方程
        for(int i=1;i<=n;++i)
        {
            for (int j=1;j<=m;++j)
            {
                if (text1[i-1] == text2[j-1])
                {
                    dp[i][j] = 1 + dp[i-1][j-1];
                }
                else
                {
                    dp[i][j] = std::max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }

        return dp[n][m];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值