AVL树(《C++数据结构与算法》P202)

这篇博客介绍了AVL树的基本概念,包括其平衡因子和高度差不超过1的特性。详细阐述了插入和删除操作可能导致不平衡,并展示了如何通过旋转操作(左旋、右旋、双旋)来恢复平衡。此外,还提供了C++实现的AVLTree类,包含了插入、删除、查找、遍历和平衡调整等方法。示例代码展示了如何创建、插入元素、遍历以及删除元素的过程。
摘要由CSDN通过智能技术生成

1 介绍

        AVL树严格遵守“平衡二叉查找树”的定义,即:每个节点左右子树的高度差最大为1。

        AVS树中会用“平衡因子”来指导树的调整,即:AVL树中隐含的使用了平衡树的技术。这个平衡因子的定义为:右子树的高度减去左子树的高度。

        在AVL树中执行插入和删除都有可能破坏树的平衡,所以需要进行适当的调整。

1.1 插入过程

 

 

1.2 删除过程

删除元素的几个旋转操作:

2 实现

2.1 AVLTree.hpp

定义和实现均在这个文件中

#ifndef _AVL_TREE_HPP_
#define _AVL_TREE_HPP_

#include <iomanip>
#include <iostream>
using namespace std;

template <class T>
class AVLTreeNode {
public:
	T key;                // 关键字(键值)
	int height;         // 高度
	AVLTreeNode *left;    // 左孩子
	AVLTreeNode *right;    // 右孩子

	AVLTreeNode(T value, AVLTreeNode *l, AVLTreeNode *r) :
		key(value), height(0), left(l), right(r) {}
};

template <class T>
class AVLTree {
private:
	AVLTreeNode<T> *mRoot;    // 根结点

public:
	AVLTree();
	~AVLTree();

	// 获取树的高度
	int height();
	// 获取树的高度
	int max(int a, int b);

	// 前序遍历"AVL树"
	void preOrder();
	// 中序遍历"AVL树"
	void inOrder();
	// 后序遍历"AVL树"
	void postOrder();

	// (递归实现)查找"AVL树"中键值为key的节点
	AVLTreeNode<T>* search(T key);
	// (非递归实现)查找"AVL树"中键值为key的节点
	AVLTreeNode<T>* iterativeSearch(T key);

	// 查找最小结点:返回最小结点的键值。
	T minimum();
	// 查找最大结点:返回最大结点的键值。
	T maximum();

	// 将结点(key为节点键值)插入到AVL树中
	void insert(T key);

	// 删除结点(key为节点键值)
	void remove(T key);

	// 销毁AVL树
	void destroy();

	// 打印AVL树
	void print();
private:
	// 获取树的高度
	int height(AVLTreeNode<T>* tree);

	// 前序遍历"AVL树"
	void preOrder(AVLTreeNode<T>* tree) const;
	// 中序遍历"AVL树"
	void inOrder(AVLTreeNode<T>* tree) const;
	// 后序遍历"AVL树"
	void postOrder(AVLTreeNode<T>* tree) const;

	// (递归实现)查找"AVL树x"中键值为key的节点
	AVLTreeNode<T>* search(AVLTreeNode<T>* x, T key) const;
	// (非递归实现)查找"AVL树x"中键值为key的节点
	AVLTreeNode<T>* iterativeSearch(AVLTreeNode<T>* x, T key) const;

	// 查找最小结点:返回tree为根结点的AVL树的最小结点。
	AVLTreeNode<T>* minimum(AVLTreeNode<T>* tree);
	// 查找最大结点:返回tree为根结点的AVL树的最大结点。
	AVLTreeNode<T>* maximum(AVLTreeNode<T>* tree);

	// LL:左左对应的情况(左单旋转)。
	AVLTreeNode<T>* leftLeftRotation(AVLTreeNode<T>* k2);

	// RR:右右对应的情况(右单旋转)。
	AVLTreeNode<T>* rightRightRotation(AVLTreeNode<T>* k1);

	// LR:左右对应的情况(左双旋转)。
	AVLTreeNode<T>* leftRightRotation(AVLTreeNode<T>* k3);

	// RL:右左对应的情况(右双旋转)。
	AVLTreeNode<T>* rightLeftRotation(AVLTreeNode<T>* k1);

	// 将结点(z)插入到AVL树(tree)中
	AVLTreeNode<T>* insert(AVLTreeNode<T>* &tree, T key);

	// 删除AVL树(tree)中的结点(z),并返回被删除的结点
	AVLTreeNode<T>* remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z);

	// 销毁AVL树
	void destroy(AVLTreeNode<T>* &tree);

	// 打印AVL树
	void print(AVLTreeNode<T>* tree, T key, int direction);
};

/*
 * 构造函数
 */
template <class T>
AVLTree<T>::AVLTree() :mRoot(NULL)
{
}

/*
 * 析构函数
 */
template <class T>
AVLTree<T>::~AVLTree()
{
	destroy(mRoot);
}

/*
 * 获取树的高度
 */
template <class T>
int AVLTree<T>::height(AVLTreeNode<T>* tree)
{
	if (tree != NULL)
		return tree->height;

	return 0;
}

template <class T>
int AVLTree<T>::height()
{
	return height(mRoot);
}
/*
 * 比较两个值的大小
 */
template <class T>
int AVLTree<T>::max(int a, int b)
{
	return a > b ? a : b;
}

/*
 * 前序遍历"AVL树"
 */
template <class T>
void AVLTree<T>::preOrder(AVLTreeNode<T>* tree) const
{
	if (tree != NULL)
	{
		cout << tree->key << " ";
		preOrder(tree->left);
		preOrder(tree->right);
	}
}

template <class T>
void AVLTree<T>::preOrder()
{
	preOrder(mRoot);
}

/*
 * 中序遍历"AVL树"
 */
template <class T>
void AVLTree<T>::inOrder(AVLTreeNode<T>* tree) const
{
	if (tree != NULL)
	{
		inOrder(tree->left);
		cout << tree->key << " ";
		inOrder(tree->right);
	}
}

template <class T>
void AVLTree<T>::inOrder()
{
	inOrder(mRoot);
}

/*
 * 后序遍历"AVL树"
 */
template <class T>
void AVLTree<T>::postOrder(AVLTreeNode<T>* tree) const
{
	if (tree != NULL)
	{
		postOrder(tree->left);
		postOrder(tree->right);
		cout << tree->key << " ";
	}
}

template <class T>
void AVLTree<T>::postOrder()
{
	postOrder(mRoot);
}

/*
 * (递归实现)查找"AVL树x"中键值为key的节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::search(AVLTreeNode<T>* x, T key) const
{
	if (x == NULL || x->key == key)
		return x;

	if (key < x->key)
		return search(x->left, key);
	else
		return search(x->right, key);
}

template <class T>
AVLTreeNode<T>* AVLTree<T>::search(T key)
{
	return search(mRoot, key);
}

/*
 * (非递归实现)查找"AVL树x"中键值为key的节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::iterativeSearch(AVLTreeNode<T>* x, T key) const
{
	while ((x != NULL) && (x->key != key))
	{
		if (key < x->key)
			x = x->left;
		else
			x = x->right;
	}

	return x;
}

template <class T>
AVLTreeNode<T>* AVLTree<T>::iterativeSearch(T key)
{
	return iterativeSearch(mRoot, key);
}

/*
 * 查找最小结点:返回tree为根结点的AVL树的最小结点。
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::minimum(AVLTreeNode<T>* tree)
{
	if (tree == NULL)
		return NULL;

	while (tree->left != NULL)
		tree = tree->left;
	return tree;
}

template <class T>
T AVLTree<T>::minimum()
{
	AVLTreeNode<T> *p = minimum(mRoot);
	if (p != NULL)
		return p->key;

	return (T)NULL;
}

/*
 * 查找最大结点:返回tree为根结点的AVL树的最大结点。
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::maximum(AVLTreeNode<T>* tree)
{
	if (tree == NULL)
		return NULL;

	while (tree->right != NULL)
		tree = tree->right;
	return tree;
}

template <class T>
T AVLTree<T>::maximum()
{
	AVLTreeNode<T> *p = maximum(mRoot);
	if (p != NULL)
		return p->key;

	return (T)NULL;
}

/*
 * LL:左左对应的情况(左单旋转)。
 *
 * 返回值:旋转后的根节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftLeftRotation(AVLTreeNode<T>* k2)
{
	AVLTreeNode<T>* k1;

	k1 = k2->left;
	k2->left = k1->right;
	k1->right = k2;

	k2->height = max(height(k2->left), height(k2->right)) + 1;
	k1->height = max(height(k1->left), k2->height) + 1;

	return k1;
}

/*
 * RR:右右对应的情况(右单旋转)。
 *
 * 返回值:旋转后的根节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightRightRotation(AVLTreeNode<T>* k1)
{
	AVLTreeNode<T>* k2;

	k2 = k1->right;
	k1->right = k2->left;
	k2->left = k1;

	k1->height = max(height(k1->left), height(k1->right)) + 1;
	k2->height = max(height(k2->right), k1->height) + 1;

	return k2;
}

/*
 * LR:左右对应的情况(左双旋转)。
 *
 * 返回值:旋转后的根节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftRightRotation(AVLTreeNode<T>* k3)
{
	k3->left = rightRightRotation(k3->left);

	return leftLeftRotation(k3);
}

/*
 * RL:右左对应的情况(右双旋转)。
 *
 * 返回值:旋转后的根节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightLeftRotation(AVLTreeNode<T>* k1)
{
	k1->right = leftLeftRotation(k1->right);

	return rightRightRotation(k1);
}

/*
 * 将结点插入到AVL树中,并返回根节点
 *
 * 参数说明:
 *     tree AVL树的根结点
 *     key 插入的结点的键值
 * 返回值:
 *     根节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::insert(AVLTreeNode<T>* &tree, T key)
{
	if (tree == NULL)
	{
		// 新建节点
		tree = new AVLTreeNode<T>(key, NULL, NULL);
		if (tree == NULL)
		{
			cout << "ERROR: create avltree node failed!" << endl;
			return NULL;
		}
	}
	else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
	{
		tree->left = insert(tree->left, key);
		// 插入节点后,若AVL树失去平衡,则进行相应的调节。
		if (height(tree->left) - height(tree->right) == 2)
		{
			if (key < tree->left->key)
				tree = leftLeftRotation(tree);
			else
				tree = leftRightRotation(tree);
		}
	}
	else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
	{
		tree->right = insert(tree->right, key);
		// 插入节点后,若AVL树失去平衡,则进行相应的调节。
		if (height(tree->right) - height(tree->left) == 2)
		{
			if (key > tree->right->key)
				tree = rightRightRotation(tree);
			else
				tree = rightLeftRotation(tree);
		}
	}
	else //key == tree->key)
	{
		cout << "添加失败:不允许添加相同的节点!" << endl;
	}

	tree->height = max(height(tree->left), height(tree->right)) + 1;

	return tree;
}

template <class T>
void AVLTree<T>::insert(T key)
{
	insert(mRoot, key);
}

/*
 * 删除结点(z),返回根节点
 *
 * 参数说明:
 *     tree AVL树的根结点
 *     z 待删除的结点
 * 返回值:
 *     根节点
 */
template <class T>
AVLTreeNode<T>* AVLTree<T>::remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z)
{
	// 根为空 或者 没有要删除的节点,直接返回NULL。
	if (tree == NULL || z == NULL)
		return NULL;

	if (z->key < tree->key)        // 待删除的节点在"tree的左子树"中
	{
		tree->left = remove(tree->left, z);
		// 删除节点后,若AVL树失去平衡,则进行相应的调节。
		if (height(tree->right) - height(tree->left) == 2)
		{
			AVLTreeNode<T> *r = tree->right;
			if (height(r->left) > height(r->right))
				tree = rightLeftRotation(tree);
			else
				tree = rightRightRotation(tree);
		}
	}
	else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
	{
		tree->right = remove(tree->right, z);
		// 删除节点后,若AVL树失去平衡,则进行相应的调节。
		if (height(tree->left) - height(tree->right) == 2)
		{
			AVLTreeNode<T> *l = tree->left;
			if (height(l->right) > height(l->left))
				tree = leftRightRotation(tree);
			else
				tree = leftLeftRotation(tree);
		}
	}
	else    // tree是对应要删除的节点。
	{
		// tree的左右孩子都非空
		if ((tree->left != NULL) && (tree->right != NULL))
		{
			if (height(tree->left) > height(tree->right))
			{
				// 如果tree的左子树比右子树高;
				// 则(01)找出tree的左子树中的最大节点
				//   (02)将该最大节点的值赋值给tree。
				//   (03)删除该最大节点。
				// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
				// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
				AVLTreeNode<T>* max = maximum(tree->left);
				tree->key = max->key;
				tree->left = remove(tree->left, max);
			}
			else
			{
				// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
				// 则(01)找出tree的右子树中的最小节点
				//   (02)将该最小节点的值赋值给tree。
				//   (03)删除该最小节点。
				// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
				// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
				AVLTreeNode<T>* min = minimum(tree->right);
				tree->key = min->key;
				tree->right = remove(tree->right, min);
			}
		}
		else
		{
			AVLTreeNode<T>* tmp = tree;
			tree = (tree->left != NULL) ? tree->left : tree->right;
			delete tmp;
		}
	}

	return tree;
}

template <class T>
void AVLTree<T>::remove(T key)
{
	AVLTreeNode<T>* z;

	if ((z = search(mRoot, key)) != NULL)
		mRoot = remove(mRoot, z);
}

/*
 * 销毁AVL树
 */
template <class T>
void AVLTree<T>::destroy(AVLTreeNode<T>* &tree)
{
	if (tree == NULL)
		return;

	if (tree->left != NULL)
		destroy(tree->left);
	if (tree->right != NULL)
		destroy(tree->right);

	delete tree;
}

template <class T>
void AVLTree<T>::destroy()
{
	destroy(mRoot);
}

/*
 * 打印"二叉查找树"
 *
 * key        -- 节点的键值
 * direction  --  0,表示该节点是根节点;
 *               -1,表示该节点是它的父结点的左孩子;
 *                1,表示该节点是它的父结点的右孩子。
 */
template <class T>
void AVLTree<T>::print(AVLTreeNode<T>* tree, T key, int direction)
{
	if (tree != NULL)
	{
		if (direction == 0)    // tree是根节点
			cout << setw(2) << tree->key << " is root" << endl;
		else                // tree是分支节点
			cout << setw(2) << tree->key << " is " << setw(2) << key << "'s " << setw(12) << (direction == 1 ? "right child" : "left child") << endl;

		print(tree->left, tree->key, -1);
		print(tree->right, tree->key, 1);
	}
}

template <class T>
void AVLTree<T>::print()
{
	if (mRoot != NULL)
		print(mRoot, mRoot->key, 0);
}
#endif

 2.2 test.cpp

// AVLTree.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//

#include "pch.h"
#include <iostream>
#include "AVLTree.hpp"
using namespace std;


int main()
{
	//static int arr[] = { 3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9 };
	static int arr[] = {33, 16 ,50, 13, 45, 58, 40, 47};
	#define TBL_SIZE(a) ( (sizeof(a)) / (sizeof(a[0])) )

	int i, ilen;
	AVLTree<int>* tree = new AVLTree<int>();

	cout << "== 依次添加: ";
	ilen = TBL_SIZE(arr);
	for (i = 0; i < ilen; i++)
	{
		cout << arr[i] << " ";
		tree->insert(arr[i]);
	}

	cout << "\n== 前序遍历: ";
	tree->preOrder();

	cout << "\n== 中序遍历: ";
	tree->inOrder();

	cout << "\n== 后序遍历: ";
	tree->postOrder();
	cout << endl;

	cout << "== 高度: " << tree->height() << endl;
	cout << "== 最小值: " << tree->minimum() << endl;
	cout << "== 最大值: " << tree->maximum() << endl;
	cout << "== 树的详细信息: " << endl;
	tree->print();

	//i = 8;
	i = 16;
	cout << "\n== 删除根节点: " << i;
	tree->remove(i);

	cout << "\n== 高度: " << tree->height();
	cout << "\n== 中序遍历: ";
	tree->inOrder();
	cout << "\n== 树的详细信息: " << endl;
	tree->print();

	// 销毁二叉树
	tree->destroy();

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值