HDU1531 & POJ1364 King(差分约束系统)

题意:好毒瘤的题面啊。。。

就是有一个长度N的序列S = {a1,a2,...,an},现在有M个约束条件,每个约束条件包含三个数字s, n, k和一个用来表示大于号(gt)或小于号(lt)的串o,表示 a_{s} + a_{s + 1} + ... + a_{s + n} > k 或 a_{s} + a_{s + 1} + ... + a_{s + n} < k ,'>' 还是 '<' 取决于串o。问这m个条件能够同时得到满足。

思路:可以看出每个约束都是S的一个子序列的和与k的关系,记Si为S中前i个元素的和,则可以将原来的不等式转换为 S_{a + b} - S_{a - 1} >= k + 1 或 S_{a + b} - S_{a - 1} <= k - 1,即变成了差分约束求解的存在性问题,用最长路和最短路求都可以。这里用spfa跑最短路判负环。

因为题目中给的图不一定是连通的,所有需要加一个到所有结点的边权都是0的超级源点,这一步通过预先将所有元素加入队列来完成。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <cstdlib>
#include <set>
#include <string>

using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 105;
struct edg{
    int v, d, nxt;
}G[maxn];
int pre[maxn], tot, dis[maxn], times[maxn];
bool vis[maxn];
int n, m;
void add(int u, int v, int w) {
    G[tot].v = v;
    G[tot].d = w;
    G[tot].nxt = pre[u];
    pre[u] = tot++;
}
int spfa() {
    queue<int> que;
    for (int i = 0; i <= n; ++i) {
        vis[i] = 1;
        que.push(i); //预先将结点都加入队列,代替超级源点的功能
        dis[i] = inf;
        times[i] = 1;
    }
    dis[0] = 0;
    while (!que.empty()) {
        int u = que.front();
        que.pop();
        vis[u] = false;
        for (int i = pre[u]; ~i; i = G[i].nxt) {
            int v = G[i].v, w = G[i].d;
            if (dis[u] + w < dis[v]) {
                dis[v] = dis[u] + w;
                if (!vis[v]) {
                    vis[v] = true;
                    if (++times[v] > n + 1) {
                        return false;
                    }
                    que.push(v);
                }
            }
        }
    }
    return true;
}
int main() {
    int a, b, k;
    char str[5];
    while (~scanf("%d", &n) && n) {
        tot = 0;
        memset(pre, -1, sizeof(pre));
        scanf("%d", &m);
        while (m--) {
            scanf("%d%d%s%d", &a, &b, str, &k);
            if (str[0] == 'g') {
                add(a + b, a - 1, -k - 1);
            } else {
                add(a - 1, a + b, k - 1);
            }
        }
        puts(spfa() ? "lamentable kingdom" : "successful conspiracy");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值