题意:给一个长度1e5的串,求它的每个前缀包含的不同回文串数量。
思路:不同回文串数量正好就是回文树中节点个数-2(除去节点0和1),按顺序插入字符构造回文树,每次插入字符后的结点数就是对应前缀中的回文串种类数。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <cstdlib>
#include <set>
#include <map>
#include <vector>
#include <string>
using namespace std;
typedef long long ll;
const ll linf = 0x3f3f3f3f3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int maxn = 100005;
const int mod = 1000000007;
const int N = 27; // 字符集大小
struct Palindromic_Tree {
int nxt[maxn][N];//nxt指针,nxt指针和字典树类似,指向的串为当前串两端加上同一个字符构成
int fail[maxn];//fail指针,失配后跳转到fail指针指向的节点
int cnt[maxn];//cnt[i]表示i代表的本质不同的串的个数 //结点i代表的回文串在原串中出现的次数
int num[maxn];//以节点i表示的最长回文串的最右端点为回文串结尾的回文串个数
int len[maxn];//len[i]表示节点i表示的回文串的长度
int S[maxn];//存放添加的字符
int last;//指向上一个字符所在的节点,方便下一次add
int n;//字符数组指针
int p;//节点指针/节点数
int newnode(int l) {//新建节点
for(int i = 0; i < N; ++i) nxt[p][i] = 0;
cnt[p] = 0;
num[p] = 0;
len[p] = l;
return p++;
}
void init() {//初始化
p = 0;
newnode(0);
newnode(-1);
last = 0;
n = 0;
S[n] = -1;//开头放一个字符集中没有的字符,减少特判
fail[0] = 1;
}
int get_fail(int x) {//和KMP一样,失配后找一个尽量最长的
while (S[n - len[x] - 1] != S[n]) x = fail[x];
return x;
}
void add(int c) {
//c -= 'a';
S[++ n] = c;
int cur = get_fail(last);//通过上一个回文串找这个回文串的匹配位置
if (!nxt[cur][c]) {//如果这个回文串没有出现过,说明出现了一个新的本质不同的回文串
int now = newnode(len[cur] + 2);//新建节点
fail[now] = nxt[get_fail(fail[cur])][c];//和AC自动机一样建立fail指针,以便失配后跳转
nxt[cur][c] = now;
num[now] = num[fail[now]] + 1;
}
last = nxt[cur][c];
cnt[last]++;
}
void cont() {
for (int i = p - 1; i >= 0; --i) cnt[fail[i]] += cnt[i];
//父亲累加儿子的cnt,因为如果fail[v]=u,则u一定是v的子回文串!
}
}p_tree;
char s[maxn];
int main() {
scanf("%s", s);
p_tree.init();
int len = strlen(s);
for (int i = 0; i < len; ++i) {
p_tree.add(s[i] - 'a');
printf("%d%c", p_tree.p - 2, i == len - 1 ? '\n' : ' ');
}
return 0;
}