URAL1960 Palindromes and Super Abilities(回文树)

题意:给一个长度1e5的串,求它的每个前缀包含的不同回文串数量。

 

思路:不同回文串数量正好就是回文树中节点个数-2(除去节点0和1),按顺序插入字符构造回文树,每次插入字符后的结点数就是对应前缀中的回文串种类数。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <cstdlib>
#include <set>
#include <map>
#include <vector>
#include <string>

using namespace std;

typedef long long ll;
const ll linf = 0x3f3f3f3f3f3f3f3f;
const int inf = 0x3f3f3f3f;
const int maxn = 100005;
const int mod = 1000000007;
const int N = 27; // 字符集大小

struct Palindromic_Tree {
	int nxt[maxn][N];//nxt指针,nxt指针和字典树类似,指向的串为当前串两端加上同一个字符构成
	int fail[maxn];//fail指针,失配后跳转到fail指针指向的节点
	int cnt[maxn];//cnt[i]表示i代表的本质不同的串的个数 //结点i代表的回文串在原串中出现的次数
	int num[maxn];//以节点i表示的最长回文串的最右端点为回文串结尾的回文串个数
	int len[maxn];//len[i]表示节点i表示的回文串的长度
	int S[maxn];//存放添加的字符
	int last;//指向上一个字符所在的节点,方便下一次add
	int n;//字符数组指针
	int p;//节点指针/节点数

	int newnode(int l) {//新建节点
		for(int i = 0; i < N; ++i) nxt[p][i] = 0;
		cnt[p] = 0;
		num[p] = 0;
		len[p] = l;
		return p++;
	}

	void init() {//初始化
		p = 0;
		newnode(0);
		newnode(-1);
		last = 0;
		n = 0;
		S[n] = -1;//开头放一个字符集中没有的字符,减少特判
		fail[0] = 1;
	}

	int get_fail(int x) {//和KMP一样,失配后找一个尽量最长的
		while (S[n - len[x] - 1] != S[n]) x = fail[x];
		return x;
	}

	void add(int c) {
		//c -= 'a';
		S[++ n] = c;
		int cur = get_fail(last);//通过上一个回文串找这个回文串的匹配位置
		if (!nxt[cur][c]) {//如果这个回文串没有出现过,说明出现了一个新的本质不同的回文串
			int now = newnode(len[cur] + 2);//新建节点
			fail[now] = nxt[get_fail(fail[cur])][c];//和AC自动机一样建立fail指针,以便失配后跳转
			nxt[cur][c] = now;
			num[now] = num[fail[now]] + 1;
		}
		last = nxt[cur][c];
		cnt[last]++;
	}

	void cont() {
		for (int i = p - 1; i >= 0; --i) cnt[fail[i]] += cnt[i];
		//父亲累加儿子的cnt,因为如果fail[v]=u,则u一定是v的子回文串!
	}
}p_tree;
char s[maxn];
int main() {
    scanf("%s", s);
    p_tree.init();
    int len = strlen(s);
    for (int i = 0; i < len; ++i) {
        p_tree.add(s[i] - 'a');
        printf("%d%c", p_tree.p - 2, i == len - 1 ? '\n' : ' ');
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值