冒泡排序与选择排序的区别
1.冒泡排序(吐泡泡算法):
顾名思义,冒泡就是让一个泡泡逐渐的上升,直到到达顶点,如同小鱼吐泡泡一样。
算法描述:
我们在给定的数字中,将每两个相邻数字进行比较。
例如:我们进行从大到小的排序,那么如果前面的数字小于后面的,我们就应该将这两个数字进行交换(从小到大也是同理)
应该注意的是:
我们比较一轮的结果只是将一个数给排好,要想把所以数字均排列好,应该进行n-1轮(n代表数字个数)。
而在每一轮中我们又要确定比较的次数,因为每比较一轮,我们就确定了一个数,所以比较的次数应该为n-m次(n为数字总数,m为当前轮数)。
算法实现:
#include<stdio.h>
int main()
{
int i,j,t,a[10];
for (i=0;i<=9;i++)
{
scanf("%d",&a[i]);
}
for (i=0;i<=9;i++)#外层循环,控制轮数
{
for (j=0;j<=9-i;j++)#内层循环,控制次数
{
if (a[j]>=a[j+1])
{
t=a[j+1];
a[j+1]=a[j];
a[j]=t;
}
}
}
for (i=0;i<=9;i++)
{
printf("%d\n",a[i]);
}
return 0;
}
动态展示图:
2.选择排序(打擂台算法):
顾名思义,选择就是先选出一个最厉害的人当擂主,然后让其他人跟他进行比赛,如果赢了就取代他,输了他继续当擂主,直到所有的人都与他打过比赛,最后就可以确定擂主是谁。
算法描述:
我们在给定的数字中,先挑选出一个数,然后将其他的数与其依次比较。
例如:我们进行从小到大的排序,先把第一个数设为擂主,然后将后面数字依次与其比较,如果后面数字小于他,则两数交换,如此类推,最后第一个数一定为最大的数(从大到小同理)。
应该注意的是:
我们比较一轮的结果只是将一个数给排好,要想把所以数字均排列好,应该进行n-1轮(n代表数字个数)。
而在每一轮中我们又要确定比较的次数,因为每比较一轮,我们就确定了一个数,所以比较的次数应该为n-m次(n为数字总数,m为当前轮数)。
算法实现:
#include<stdio.h>
int main()
{
int i,j,t,a[10];
for (i=0;i<=9;i++)
{
scanf("%d",&a[i]);
}
for (i=0;i<=9;i++)#外层循环,控制比较的轮数
{
for (j=i+1;j<=9;j++)#内层循环,控制比较的次数
{
if (a[i]<=a[j])
{
t=a[j];
a[j]=a[i];
a[i]=t;
}
}
}
for (i=0;i<=9;i++)
{
printf("%d\n",a[i]);
}
return 0;
}
动态展示图:
二者相同之处:
1.均使用两次循环,一个为外层循环,一个为内层循环。
2.外层循环的表达方式相同。
3.交换的核心相同。
二者不同之处:
1.内层循环的表达方式不同。
冒泡排序是:for (j=0;j<=9-i;j++)
选择排序是:for (j=i+1;j<=9;j++)
虽然两个排序每轮比较的次数是相同的,但是采用了不同的表达方式。
2.交换的算法表达不同。
冒泡排序:
t=a[j+1];
a[j+1]=a[j];
a[j]=t;
选择排序:
t=a[j];
a[j]=a[i];
a[i]=t;
但是二者本质相同。