MFSR
摘要
1
由于互联网的发展,如今信息呈爆炸式增长和多样性。因此,各个领域的决策都面临着不同的挑战。推荐系统通过识别用户兴趣、数据过滤和数据管理,为用户提供个性化服务。这有利于营销和用户满意度。推荐系统一直面临着冷启动、稀疏性、可扩展性、准确性和质量等挑战。协同过滤(CF)作为推荐系统中最成功的方法之一,是基于用户之间的相似性。我们认为相似性是一个模糊的概念,通过使用模糊逻辑,我们在推荐系统中得到了更真实的结果。模糊逻辑能够更好地处理不确定性,是一种有效的方法来识别项目和用户相似性度量中的歧义和不确定性。
在本文中,我们提出了一种新的推荐系统多级模糊相似性度量,称为MFSR
,它是基于流行性和重要性的。为了提高推荐的准确性和质量,我们还提出了一种用于相似度计算的层次结构。为了评估这项工作的贡献,我们使用MAE、F1、召回率和精确度。基于所提出的相似性度量和层次结构的MAE
值等于0.423,分别比PIP
和NHSM
好4%和13%。此外,利用所提出的相似性度量和层次结构,我们得到的F1值等于0.654,分别比PIP
和NHSM
高出17%和20%。我们还观察到,使用所提出的方法,召回率和准确率都有所提高。结果表明,该方法(MFSR)的性能优于近年来类似的PIP和NHSM方法。
1 引言
1
过去几年,社交网络和电子商务网站的爆炸式增长,使人们在互联网上花费了更多的时间。然而,大量的可用信息和产品让他们不知所措,犹豫不决。引入推荐系统的概念是为了应对信息过载的挑战,审查大型信息集,并检索最相关的信息。推荐系统提供了一种大规模定制的方式,这种方式在互联网上越来越流行。例如,今天的消费者在网上购物时面临着数百万的商品和服务。推荐系统通过提供用户可能感兴趣的产品推荐来帮助消费者,如书籍、CD、电影、餐馆、在线新闻文章和其他服务。推荐系统减少了用户的搜索努力,并以更高的客户忠诚度、更高的销售额和更多的广告收入奖励公司。事实上,推荐系统旨在引导人们在海量信息中找到有用且更有趣的选项。推荐系统的主要目标如下:识别用户的兴趣,过滤现有信息,最后向用户提出有用且有趣的选项。
推荐系统在电子商务环境下提供个性化的一对一营销。客户旅程分析是营销领域的热门话题。了解客户的行为至关重要,被视为业务成功的关键驱动因素之一。客户之旅是客户与组织互动时经历的完整体验周期。对于交叉销售有效的客户体验的研究相对较少。换言之,购物体验中的客户互动如何帮助公司识别交叉销售或追加销售产品和服务的机会?交叉销售的一个基本示例是Netflix
上的推荐系统。亚马逊是使用协作推荐系统的先驱,作为其营销战略的一部分,它为“每个客户提供个性化的商店”。个性化可以使消费者和相关公司都受益。通过建立更准确的客户模型,公司可以更好地了解客户需求。满足这些需求可以在相关产品的交叉销售、追加销售、产品亲和力、一对一促销、更大的购物篮和客户保留方面取得更大的成功。
结果表明,尽管自推荐系统首次发表以来已有20多年的时间,但推荐系统仍然受到研究人员的欢迎。这一趋势表明,自2001年以来,研究成果稳步增长,2013年发表了93篇论文,是迄今为止任何一年中发表论文最多的一年。这表明,推荐系统仍然是一个热门的研究课题,并吸引了研究人员的注意。图1显示了推荐系统领域中每年论文的完整分布情况。
推荐系统一直面临着冷启动、稀疏性、可扩展性、准确性和质量等挑战。协作过滤是最流行的方法,广泛用于推荐系统设计。协作过滤的经典方法基于相似性度量,如Pearson
和余弦。这导致了冷启动等问题,并且在几乎没有评级记录的情况下降低了建议的质量。为了处理这些问题,Hyung Jun In提出了一种新的相似性度量,以提高冷启动条件下的推荐性能。稀疏性问题是协作过滤系统的主要弱点。稀疏性固有地存在于系统中,并随着用户数量和项目的增长而增加。Mahara提出了一种新的基于散度平均值的相似性度量方法,以消除协同过滤系统中存在的稀疏性问题。此外,Polatidis和Georgiadis、Arsan、Koksal和Bozkus提出了提高建议准确性和质量的方法。
2003年,Yager(2003)引入了一个基于模糊逻辑的推荐系统,吸引了许多研究人员的注意,他们开始深入该领域,寻找处理数据、用户偏好和用户人口统计中不确定性的新方法。这种不确定性是人类行为固有的,对推荐系统基本功能的仔细分析和理解无疑有助于预测对用户的准确推荐。模糊逻辑已广泛用于推荐系统的设计,以处理项目特征和用户行为中的不确定性、不精确性和模糊性。它在处理信息不精确和用户偏好渐变的数据时非常有用。模糊逻辑是处理推荐系统中数据不确定性的潜在突破。
在本文中,我们首先提出了一种新的模糊相似性度量,称为FSR,它基于流行度、显著性和均方差分法等参数,用于协同过滤推荐系统。然后,基于FSR,我们提出了一种多级相似度计算体系结构MFSR,以提高推荐的准确性和质量。结果表明,提出的MFSR方法的性能优于最近的相似性度量,如PIP和NHSM,以及经典方法,如MSD。
论文的其余部分组织如下:第2节介绍了协同过滤推荐系统的最新研究成果。我们还介绍了推荐系统中使用的一些最重要的相似性度量。第3节介绍了所提出的模糊相似性度量(FSR)和多级相似性计算(MFSR)。第4节专门介绍实验和评估。最后,在第5节中,我们给出了结论和未来的工作。
2 文献综述
1
在本节中,我们首先介绍推荐系统中使用的一些相似性度量。我们还通过一个例子讨论了这些度量的准确性。由于我们的方法是基于模糊逻辑的,因此我们将解释模糊逻辑的一些概念。
2.1 推荐系统中相似性度量的研究进展
推荐系统和协同过滤成为人机交互、机器学习和信息检索研究人员日益感兴趣的话题。它们收集用户对一组项目的偏好信息。可以显式(通常通过收集用户的评分)或隐式(通常通过监视用户的行为)获取信息。推荐系统也可以使用用户的人口统计特征。使用此类系统可以缓解产品和服务选择任务的复杂性,并旨在克服信息过载的问题 。推荐系统中使用了不同的方法、算法和技术。
他们可以分类如下:
基于内容、基于协同过滤、基于知识、混合
广泛接受的分类法将推荐方法分为基于内存和基于模型的两类。基于记忆的方法可以定义为(a)仅对项目的用户评分矩阵起作用,以及(b)使用转诊过程之前生成的任何评分的方法。基于内存的方法通常使用相似性度量来获得两个用户或两个项目之间的距离,基于他们的每个比率。基于模型的方法使用比率矩阵创建模型,从中可以建立相似用户集。基于内存的方法可以提供相当高的推荐精度,但计算时间将随着用户和项目的增加而快速增长。基于模型的方法往往比基于内存的方法在预测时间上更快,因为模型的构建可以在相当长的时间内完成,并且该过程是离线执行的。
本文主要研究协同过滤推荐系统。在协同过滤中,相似度函数用于根据用户的评分计算用户之间的相似度。换句话说,协同过滤的核心是基于用户和/或项目之间的相似性。近年来,许多研究通过研究推荐系统中使用的相似性度量来改进和提高推荐的准确性和质量。由于项目之间或用途之间的相似性自然是模糊的,因此将模糊逻辑、模糊集理论和模糊关系应用于推荐系统以获得更好的准确性也吸引了研究人员的注意。例如,Abbas et al.(2015)使用模糊集更好地处理冷启动和稀疏性问题,尽管可伸缩性问题仍然存在。
协同过滤中使用的最著名的相似性度量是Pearson相关系数、余弦、调整后的余弦度量、Jaccard、MSD、PIP和NHSM。
在下文中,用户对项目的评分示例用于显示如何计算最先进的相似性度量(即PIP和NHSM)和经典的相似性度量(即MSD)。然后,使用每种度量得到的相似度值,我们对它们进行比较,并讨论它们的缺点。
2.2 最近相似性度量的比较
1
这里,我们首先描述如何计算MSD、PIP和NHSM。然后,我们讨论了每种方法得到的相似度值。为此,我们使用了一个用户评级示例,描述如下:
我们假设有四个用户
{
u
1
、
u
2
、
u
3
、
u
4
}
\left\{u_1、u_2、u_3、u_4\right\}
{u1、u2、u3、u4}和五个项目
{
i
t
e
m
1
、
i
t
e
m
2
、
i
t
e
m
3
、
i
t
e
m
4
、
i
t
e
m
5
}
\left\{item_1、item_2、item_3、item_4、item_5\right\}
{item1、item2、item3、item4、item5}。每个项目都有一些用户评分。
r
i
.
j
r_{i.j}
ri.j是用户
i
i
i对项目
j
j
j给出的评分。评分范围为1到5。所有评分都显示在一个称为用户项目矩阵的矩阵中,该矩阵表示为
R
=
(
r
i
.
j
)
5
×
4
R=(r_{i.j})_{5\times4}
R=(ri.j)5×4。表1表示示例的用户项目矩阵。缺少的评分值用“-”符号表示。
表2显示了基于表1中评级的用户之间的比较。它显示了相同的评级以及不同评级之间的差异量。例如,比较
u
s
e
r
1
(
u
1
)
user_1(u_1)
user1(u1)和
u
s
e
r
2
(
u
2
)
user_2(u_2)
user2(u2),我们发现他们对
i
t
e
m
1
item_1
item1的评分不同,而对
i
t
e
m
2
item_2
item2的评分相同(3)。此外,我们可以注意到,
u
1
u_1
u1和
u
3
u_3
u3是最相似的用户,因为它们有三个相似的评级,而只有一个与
i
t
e
m
3
item_3
item3不同的评级。
现在,使用表1中给出的用户评级,我们描述了所选度量(MSD、PIP和NHSM)的工作方式。
2.2.1 均方差
1
MSD根据评分项目的平均差异计算用户之间的相似度。MSD定义如下:
其中,
I
I
I表示用户
u
u
u和
v
v
v的公共评级项目集。
图2显示了通过使用表1中所示的用户评级获得的MSD值。
MSD的缺点如下:
MSD仅计算用户之间的平均差异,但忽略了常见评分的比例。例如,我们无法通过MSD获得
u
1
u_1
u1和
u
3
u_3
u3的最高相似度,而
u
1
u_1
u1和
u
3
u_3
u3是最相似的用户(根据表1中的评级),因为忽略了共同评级的比例。
MSD主要考虑共同评级的数量,而忽略哪些项目被给予共同评级。例如,根据图2,像
u
1
–
u
2
u_1–u_2
u1–u2和
u
1
–
u
5
u_1–u_5
u1–u5这样的一些用户对具有相似的MSD值。这对用户拥有相同数量的共同评分,而相同项目的评分不同(见表1)。
2.2.2 PIP
1
PIP相似性度量基于三个因素:邻近性、影响和受欢迎程度。用户
u
u
u和
v
v
v之间的PIP相似性定义如下:
其中,
P
I
P
(
r
u
,
p
,
r
v
,
p
)
PIP(r_{u,p},r_{v,p})
PIP(ru,p,rv,p)是项目
p
∈
I
p\in I
p∈I上两个额定值
r
u
,
p
r_{u,p}
ru,p和
r
v
,
p
r_{v,p}
rv,p的PIP值分别由用户
u
u
u和
v
v
v执行。其定义如下:
图3显示了基于表1所示评级的PIP值。PIP措施的缺点如下:
PIP比普通行为更重视差异。例如,如表1所示,
u
5
u_5
u5和
u
2
u_2
u2没有任何共同的额定值,但根据PIP值(见图3),它们比具有共同额定值的
u
1
u_1
u1和
u
2
u_2
u2更相似。作为另一个示例,根据PIP值,
u
2
u_2
u2与
u
1
u_1
u1和
u
3
u_3
u3相似。但
u
1
u_1
u1给
i
t
e
m
3
item_3
item3的分数比
u
3
u_3
u3高。Katpara和Vaghela(2016)也讨论了这个问题。
PIP只考虑常见评级的本地上下文信息。因此,存在关于用户行为的误导性全球信息。
与MSD类似,PIP只考虑共同评级集和绝对值,但不考虑共同评级的比例。这种行为导致准确性低。
PIP度量的公式非常复杂。它在不同的条件下使用不同的公式。它也没有正常化。
2.2.3 NHSm
NHSM相似度是基于邻近性、显著性和奇异性三个因素计算的。NHSM是PIP的改进版本,它使用非线性计算。NHSM计算如下:
图4显示了基于表1所示评级的NHSM值。NHSM措施的缺点如下:
NHSM相似性计算方法的主要问题是简单地将所有影响因素相乘,无法区分计算公式中不同影响因素的比例。
NHSM中忽略了对非共同评级项目的评级。
相似性计算非常复杂。
下面,我们将回顾模糊逻辑在推荐系统中的应用。
2.3 模糊逻辑在推荐系统中的应用
1
推荐系统取决于两个特性:项目和用户的偏好。这两个因素对用户的个性化水平起着至关重要的作用。虽然它们是主观的和不精确的。这对推荐系统处理不确定性提出了重大挑战。不确定性是人类行为固有的,仔细分析和理解推荐系统的基本功能肯定有助于预测准确的推荐。
为了处理这种不确定性,在推荐系统中使用模糊逻辑是一种相关的解决方案。在推荐系统中使用模糊逻辑具有以下优点:
a、 模糊规则有助于借助语言变量(“喜欢”、“不喜欢”、“糟糕”、“好”),以有效的方式对用户输入的模糊性进行建模。
b、 通过发现两个用户之间的模糊相似度,将模糊逻辑与聚类等其他技术结合使用,可以改进相似用户的确定。
c、 借助模糊规则,更容易理解特定项目上两个模糊评分(用户输入)之间的接近程度。
d、 使用模糊规则可以更好地处理用户统计数据。
模糊集的特征是其隶属函数,从映射到单位区间的域、空间或宇宙中获取值[0,1]。人类推理在一系列值上更有效,因为它能更好地捕捉到确定特定参数时的模糊性。模糊数是一个非常有用的概念,因为它可以在数学上表示语言表达式,通常以三角形模糊数或梯形模糊数的形式表示。以此为优势,推荐系统可以使用模糊规则更有效地映射用户评分、人口统计数据(如年龄、收入和职业)和两个用户的相似性。
模糊逻辑还用于在推荐系统中对相似的用户或项目进行聚类。例如,Lazzerini和Marcelloni(2007)使用模糊逻辑设计了一种模糊聚类方法,根据相似用户的共同特征对其进行聚类。
一些研究侧重于使用模糊概念进行用户-用户或项目-项目比较。例如,在(Zhang et al.,2013)中使用了语言术语,提出了Pearson相关系数的模糊扩展,用于进行用户-用户和项目-项目比较。他们利用这些相似性来预测未知的评分。Son(2014)提出了一种新的推荐系统,该系统使用基于用户人口统计数据计算的模糊相似度,而不是基于用户的程度。
考虑到现有度量方法的缺点,我们旨在提出一种新的相似度度量方法,该方法使用模糊集和模糊评分来提高推荐的准确性。在下一节中,我们将详细描述我们的方法。
3 提出的方法
1
在本节中,我们首先介绍了新提出的推荐系统模糊相似性度量FSR。然后,我们解释了如何在不增加复杂性的情况下,通过多级方法中的FSR来计算相似度,以提高准确性。所提出的多级方法称为MFSR。
3.1 推荐系统的模糊相似度量
1
FSR指标基于重要性和受欢迎程度。由于用户评分与项目之间存在不确定性和相关性,我们在FSR中使用模糊数来提高准确性。此外,为了减少计算复杂度和计算时间,FSR中使用了线性计算。图5中的流程图显示了如何计算提议的相似性度量(FSR)。在第3.1.1节中,我们首先解释FSR中使用的模糊评级和模糊计算。然后,在第3.1.2节中,详细说明了FSR计算。
3.1.1 模糊逻辑在FSR中的应用
1
在这里,我们提出了梯形模糊数,它用于我们的模糊相似性度量(FSR)。如果
M
M
M中
x
x
x的隶属函数
μ
M
(
x
)
μ_{M(x)}
μM(x)定义如下,则由四个数字
a
<
b
<
c
<
d
a<b<c<d
a<b<c<d定义的模糊数M为梯形:
为了度量模糊集中用户之间的相似度,需要进行一些模糊计算。这里,我们展示了在我们的方法中如何使用广义梯形模糊集之间的算术运算。让我们将
A
=
(
a
1
,
a
2
,
a
3
,
a
4
:
1
)
A=(a1,a2,a3,a4:1)
A=(a1,a2,a3,a4:1)和
B
=
b
1
,
b
2
,
b
3
,
b
4
:
1
B=b1,b2,b3,b4:1
B=b1,b2,b3,b4:1视为两个广义梯形模糊集,其中
0
⩽
a
i
,
b
i
⩽
1
;
i
=
{
1.2.3.4
}
0⩽ a_i,b_i⩽1;i=\left\{1.2.3.4\right\}
0⩽ai,bi⩽1;i={1.2.3.4}。
为了获得模糊评分,我们使用Patra和Mondal(2015)中提出的相同语言学术语。语言学变量如表3所示。同样的语言术语也用于其他作品,如(Chen&Chen,2008,2009;Hejazi,Doostparast,&Hosseini,2011;Khorshidi&Nikfalazar,2016;Patra&Mondal,2015;Wei&Chen,2009)。例如,如果用户在非模糊数据集中给出的评分为5,或者如果他选择了“非常好”的术语,则相当于模糊集(0.93、0.98、1、1:1)。
3.1.2 FSR计算
为了计算FSR,我们首先需要计算显著性。当项目的评分相同时,显著性等于1。当项目有不同的评分时,接近所有评分中值的评分变得更加显著。显著性计算如下:
其中
∣
r
1
−
r
m
e
d
∣
|r_1− r_{med}|
∣r1−rmed∣是用户评分与所有评分中值的绝对差值。
受欢迎程度是FSR中的第二个因素。如果两个用户的平均评分与总用户评分的平均值存在较大差异,则两个评分可以提供有关两个用户相似性的更多信息。人气计算如下:
其中
μ
k
μ_k
μk是项目
k
k
k的平均评分。受欢迎程度的最小值等于1。
两个用户之间的共同评分数是计算受欢迎程度和重要性的重要参数。这意味着我们需要根据常见评级的数量来考虑重要性和受欢迎程度的影响。因此,我们得出以下方程,我们称之为SPI:
其中
I
I
I是两个用户之间的共同评分数。
然后,为了提高相似性度量的准确性,我们考虑了项目评分的差异。MSD方法在显示项目评分差异方面具有最佳性能。
因此,建议的相似性度量(FSR)计算如下:
在下一节中,我们将描述如何使用多级方法(称为MFSR)计算FSR,以在不增加复杂性的情况下获得更准确的相似度值。
3.2 MFSR:推荐系统的多级模糊相似度量
1
在相似度计算中,试图通过在Herlocker、Konstan、Borchers和Riedl(1999)中加权,或改变变量,或操纵其计算方式来改进结果。多层次方法通过确定层次数和增加每个层次的相似度值来改进结果。
在这里,我们的目标是为推荐系统MFSR提供一个多级模糊相似性度量。由于使用了模糊集,我们需要尽可能降低方法的复杂性。多层方法的优点是在不改变相似性度量计算并使其复杂化的情况下改进相似性值。我们注意到,在MFSR中,我们使用我们的FSR度量(见第3.1节)作为衡量每个级别相似性的方法。因此,MFSR是基于FSR更好地计算相似度的又一步。图6示出了计算MFSR的不同步骤。
我们提出的方法(MFSR)的多层次基础基于Polatidis等人方法(Polatidis&Georgiadis,2017)中提出的结构。要进行多级计算,必须确定级别的数量、范围、每个级别的条件以及衡量每个级别相似性的方法。级别数(DvU)计算如下:
其中
U
U
U是数据集中的用户总数。
然后,使用方程式(15)得出将分配给第一级(DvI)的额定项目数:
其中
I
I
I是数据集中的项目总数。
最后,计算级别范围(DUI),如等式所示:
然后,在MFSR中,为了确定每个级别的条件,我们使用评分相等的项目数。这在不增加复杂性的情况下提高了相似性度量的性能。此外,建议的FSR度量(见第3.1节)被用作衡量每个级别相似性的方法。最后,等式(18)显示了如何计算新型MFSR。
式中,
T
T
T是两个用户给予相等评分的项目数,
m
0
,
m
1
,
m
2
,
⋯
,
m
n
1
m_0,m_1,m_2,\cdots,m_{n1}
m0,m1,m2,⋯,mn1和
m
n
2
m_{n2}
mn2是通过等式(15)和(16)获得的范围。
4.实验
1
在本节中,我们首先介绍数据集和评估方法。然后,对提出的相似性度量(FSR和MFSR)进行了评估。最后,将FSR和MFSR得到的结果与其他最近的相似性度量进行了比较。
在实验中,我们使用了两个MovieLens数据集,它们是明尼苏达大学提供的真实数据集。为了提高评估的准确性,我们在两个不同的数据集上进行了实验:MovieLen-100 K和MovieLens-1M。MovieLens-1M包括4000部电影、6000名用户和1000000个收视率。MovieLens-100 K包含1682部电影、943名用户和100000个收视率。在这项工作中,使用了userId、itemId和ratings。
4.1 评估指标
1
评估推荐系统有多种指标。它们包括准确性(也称为识别率)、敏感性(或召回)、特异性、精密度、
F
1
F1
F1和
F
β
F\beta
Fβ。精确性和召回措施被广泛使用。精确性可以被视为精确性的衡量标准,而回忆则是完整性的衡量标准。
为了衡量推荐系统结果的准确性,通常使用一些最常见误差指标的计算,其中平均绝对误差(MAE)尤为突出。在这项工作中,我们使用召回率、精确度、
F
1
F1
F1和MAE进行评估。精度、召回率和
F
1
F1
F1的计算如下:
其中
θ
\theta
θ是相关性阈值,
X
u
X_u
Xu定义为对用户
u
u
u的建议集,
Z
u
∗
Z^*_u
Zu∗定义为对用户
u
u
u的
N
N
N个建议集。
在方程(18,19)中,
U
、
I
、
r
u
、
p
u
U、I、r_u、p_u
U、I、ru、pu分别为用户、项目、评分用户、预测评分
U
U
U用户,
N
N
N为常数,等于10。
平均绝对误差(MAE)计算预测评级与实际评级的偏差。以下方程式用于计算平均绝对误差(MAE):
其中
M
A
M_A
MA是活动用户的总数,
N
i
p
N^p_i
Nip是用户
u
i
u_i
ui的预测项目总数,
p
i
,
k
p_{i,k}
pi,k是
u
i
u_i
ui对项目
k
k
k的预测评分。
我们还使用10倍交叉验证来评估基于给定数据的随机抽样分区的准确性。
4.2 FSR与MFSR的比较
1
在这里,我们的目的是看看多层次的使用是否有助于获得更好的相似度值。因此,我们将FSR
与MFSR
在MAE
和F1
方面进行了比较。FSR
和MFSR
的计算方法见第3.1节和第3.2节。对两个数据集(MovieLens-1M
和MovieLens-100K
)进行评估。
图7(a) 和7(b)显示了FSR
和MFSR
使用MovieLens-100K
和MovieLens-1M
数据集获得的MAE
值。我们注意到,MAE
值越低,性能越好。使用MovieLens-100K
数据集时,MFSR
和FSR
在K-neighbors=100
时的MAE
值分别等于0.43和0.44,使用MovieLens-1M
数据集时,分别等于0.42和0.46。如图7所示,通过增加K-邻域值,两种方法中的MAE
值都增加了。根据图7,MFSR
具有比FSR
更好的性能,这表明使用多级方法改进了相似度计算。
图8(a)和8(b)显示了使用MovieLens-100K
和MovieLens-1M
数据集的FSR
和MFSR
的F1
值。在这两个数据集中,我们注意到,就F1
而言,FSR
和MFSR
之间没有显著差异。
为了更好地讨论FSR
和MFSR
之间的差异,表4和表5显示了在MovieLens-100K
和MovieLens-1M
数据集上,与FSR
度量相比,MFSR
(相似性的多级计算)获得的改善百分比。为了进行准确的比较,我们在三种不同的情况下对它们进行了比较:k=40、k=100和k=200。结果表明,使用MFSR
,与MovieLens-1M
数据集上的FSR
相比,MAE
值提高了8.2%(见表5)。此外,MFSR
在MovieLens-100K
数据集上的MAE
方面优于FSR
1.6%(见表4)。关于F1
,MFSR
和FSR
之间没有显著差异。
我们注意到,尽管MFSR
和FSR
在F1
方面没有显著差异,但我们可以看到它们在MAE
方面有相当大的差异,特别是当我们使用大数据集时(表4和表5)。
因此,要在MFSR
和FSR
之间进行选择,我们更关注MAE
而不是F1
,因为:
1-这两个指标在F1
方面的表现相似,但在MAE
方面的结果不同。
2-MAE
的使用表明推荐系统处理冷启动的效率更高
因此,根据MAE
的结果,MFSR
在MovieLens-100K
(表4)上的表现比FSR
好1.6%(平均),在MovieLens-1M
数据集上的表现比FSR
好8.2%(平均)(表5)。这也意味着,随着用户数量的增加,MFSR
和FSR
在MAE
方面的差异显著增加。换句话说,MFSR
不仅在总体性能上优于FSR
(就MAE
而言),而且在实际使用的大数据集上也有更好的性能。因此,我们认为MFSR
通常比FSR
性能更好,尤其是当有相当多的用户时。
因此,其余的评估使用MFSR
度量来执行。下面,将所提出的MFSR
相似性度量与最先进的相似性度量(如PIP
和NHSM
)以及经典的MSD
度量进行比较。
4.3 MFSR与其他相似性度量的比较
1
在本节中,我们将我们提出的多级模糊相似性度量(MFSR)与经典的MSD度量以及最先进的相似性度量(如PIP和NHSM)进行比较。
图9(a)和9(b)显示了MovieLens-100K和MovieLens-1M数据集上MFSR、PIP、NHSM和MSD的召回值。MovieLens-100K数据集上MFSR、PIP、NHSM和MSD在K-neighbors=100时的召回值分别等于0.75、0.62、0.51和0.013,使用MovieLens-1M数据集时,召回值分别等于0.79、0.64、0.63和0.004。根据结果,MFSR在两个数据集上的召回率都高于其他三个指标(NHSM、PIP、MSD)。
图10(a)和10(b)显示了使用MovieLens-100K和MovieLens-1M数据集的MFSR、PIP、NHSM和MSD的精度值。MovieLens-100K数据集上MFSR、PIP、NHSM和MSD在K-neighbors=100时的精度值分别等于0.42、0.34、0.30和0.013,使用MovieLens-1M数据集时,其分别等于0.55、0.44、0.46和0.008。如图10所示,在这两个数据集上,与其他三个度量(NHSM、PIP、MSD)相比,拟议的MFSR度量在所有情况下都具有最佳精度。
图11(a)和11(b)显示了使用MovieLens-100K和MovieLens-1M数据集的MFSR、PIP、NHSM和MSD的MAE值。MovieLens-100 K数据集上MFSR、PIP、NHSM和MSD在K-neighbors=100时的MAE值分别等于0.43、0.43、0.52和1.14,使用MovieLens-1M数据集时,分别等于0.42、0.44、0.48和2.14。根据结果,我们在两个数据集上通过MFSR(MAE越低,结果越好)获得最佳MAE值。
表6和表7显示了MFSR在两个不同数据集上与其他最先进的测量方法(PIP和NHSM)相比所获得的改善百分比。为了进行更好的比较,将结果在三种不同的情况下进行比较(k=40,k=100,k=200)。
根据结果,在MovieLens-1M数据集上,通过使用MFSR,F1值比PIP提高了17%,比NHSM提高了20%(见表7)。此外,就MAE而言,MFSR在MovieLens-1M数据集上的表现分别比PIP和NHSM好4%和13%(见表7)。
在其他数据集(表6)上获得的结果也表明,MFSR优于其他度量。
最后,我们还将MFSR与另一个模糊推荐系统进行了比较。为此,我们使用Al Shamri(2016)中介绍的工作。在(Al Shamri,2016)中,在计算相似度时,将用户年龄作为模糊参数。此外,(Al Shamri,2016)使用余弦测度和模糊距离。表8显示了通过Al Shamri(2016)方法获得的MAE值和通过拟定MFSR获得的MAE值。结果表明,MFSR的性能也比其他模糊方法好得多。
5 总结
如今,随着互联网的发展和用户数量的不断增加,推荐系统的使用率也在不断扩大。因此,建议的准确性和质量得到了提高。准确性和质量是这些系统中最重要的两个因素,所有推荐系统都在努力增加这两个因素。
在这项工作中,我们首先为协同过滤推荐系统提出了一种新的模糊相似性度量FSR。FSR基于受欢迎程度和重要性因素,并使用模糊评分。然后,为了提高所提出的相似性度量(FSR)的准确性,我们引入了FSR的扩展多级版本,称为MFSR。在多层次方法中计算FSR相似度有助于在不增加复杂性的情况下提高其准确性。结果表明,由于多层计算,MFSR在MAE方面的性能优于FSR。
我们还将我们的相似性度量(MFSR)与其他两种最先进的相似性度量(即PIP和NHSM)以及经典的MSD度量进行了比较。为了更好地评估,在两个不同的数据集和不同的情况下进行了实验。根据结果,在K-邻域=100和MovieLens-1M数据集上,我们的相似性度量(MFSR)在F1方面优于PIP度量17%,优于NHSM度量20%。此外,就MAE而言,MFSR的表现优于PIP和NHSM,分别为4%和13%。所有实验表明MFSR具有相同的性能。因此,可以说,在MFSR中使用模糊评分和模糊多级相似度计算,可以得到更准确的推荐。
对于未来的工作,我们正在考虑在这项工作中进一步的几个研究方向。首先,通过动态检测水平,可以更好地调整相似度的多级计算。为此,我们计划研究如何使用模糊层次聚类来更好地确定不同的层次。其次,我们未来的工作还将集中于在相似度计算中考虑更多的参数,如信任度。此外,由于社交网络的增加,推荐系统可以从用户的社交数据中受益,从而更好地确定相似的行为。我们的目标是通过整合从社交网络获得的数据,开发CF推荐系统中的相似度计算。这也有助于克服一些问题,如在没有足够的新用户偏好数据时冷启动。在这种情况下,我们可以根据用户的社交数据计算相似度。