深度学习—加快梯度下降收敛速度(二):Monmentum、RMSprop、Adam

本文探讨了三种加速深度学习中梯度下降算法收敛速度的方法:Monmentum、RMSprop和Adam。Monmentum利用加权平均使梯度更新更平滑,RMSprop通过指数移动平均处理梯度波动,而Adam是前两者的优势结合。这些策略能有效提升模型训练的效率。
摘要由CSDN通过智能技术生成

上篇博客讲的是利用处理(分组数据集)训练数据集的方法,加快梯度下降法收敛速度,本文将介绍如何通过处理梯度的方法加快收敛速度。首先介绍Monmentum,再次介绍RMSprop,最后介绍两种算法的综合体Adam。

1.Monmentum

在介绍Monmentum之前,首先介绍加权平均法。加入给出一组数据的散点图,要求用一条曲线尽可能准确地描述散点图的趋势,如下图所示(图来自吴恩达课件):
这里写图片描述

描述时利用加权平均:
这里写图片描述

通过控制β的大小,控制曲线的平滑度,通常取β=0.9。如果将mini-batch梯度加权平均,则,mini-batch收敛曲线(蓝线)将会更加平滑,在横轴方向走的更快:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值