装配体练习1||2008年首届“中图杯”全国大学生先进制图技术于技能大赛

这是我的第一条CSDN 博客,有点激动哈。虽然本人在各方面都还是个菜鸟,不过还是想借此分享自己在学习过程中的一些心得体会啦,有不对的地方或者有更好的方法,还请各位大佬多多指教。

废话不多说,开始总结今天的学习吧。

一、题目部分

直接上图

二、解题参考

这里给出零件主体(阀体)和最后的装配体(回油阀)的solidworks(2022)建模截图

(剖视图:

三、一些问题

主体零件的难度主要在中间部分圆筒的直径的寻找、两边大轮子孔的切除以及四个肋板的建立。

第一个问题就看个人识图能力,反正图中不会有废尺寸,好好找就行,现在我还不能求快,至少要求准吧。

第二个问题我是先建好那个斜板

(看图纸应该是斜板,这里不能在第一步旋转里绘图。在拉伸时可以选成形到下一面)

接下来就拉伸切除啦,到指定面指定距离,指定面选斜板的斜面就行。

第三个问题就是要变通一点,做肋板有两种方法,一是用筋命令,而是拉伸。最好还是用前者。就画一条线,注意碰到圆形边角的稍微偏一点,完全正会报错(在这里浪费好多时间,甚至尝试过拉伸,呜呜),然后设置一下参数就可以了。

四、总结

  1. 读图要多练(熟悉基础知识,比如螺杆图纸里那些叉叉代表平面)

  1. 草图绘制要多练

  1. 选择合适的命令,方便快捷还要准确

再见,明日再战。

<think>好的,我现在需要回答用户关于PyTorch是否支持同时安装CPU和GPU版本的问题。首先,我应该回顾一下PyTorch的安装机制。根据用户提供的引用资料,安装GPU版本的PyTorch通常需要特定的CUDA版本,并且用户可能需要通过不同的渠道获取对应的whl文件,比如从官网或镜像源下载[^2][^3][^5]。 接下来,我需要理解CPU和GPU版本的区别。CPU版本是运行在处理器上的,而GPU版本需要NVIDIA的CUDA支持,利用显卡加速计算。两者在安装包上有不同的依赖项和库文件,例如GPU版本会包含CUDA相关的库,而CPU版本则没有这些。 然后,我考虑是否可以在同一个环境中同时安装两个版本。根据经验,Python的包管理通常不允许同一个包的不同版本共存,因为包名称相同(如torch)会导致冲突。用户提供的引用中提到,如果强行安装不同版本的torch,可能会覆盖现有安装,导致不可预期的问题[^4][^5]。例如,如果先安装CPU版本,再安装GPU版本,后者会覆盖前者,反之亦然。 此外,用户可能需要同时使用两种环境的情况,比如在没有GPU的机器上运行CPU代码,而在有GPU的机器上运行加速代码。这时,使用虚拟环境(如conda或venv)分别创建独立的环境可能更合适。每个环境可以安装对应的PyTorch版本,避免冲突[^1][^3]。 还有一个考虑点是PyTorch的设计是否支持同时加载两个版本的库。通常,在运行时,PyTorch会检测可用的CUDA设备,并自动使用GPU版本。如果安装了GPU版本,即使代码中没有显式调用CUDA函数,PyTorch也会优先使用GPU资源。因此,同时安装两个版本不仅技术上不可行,也没有实际必要,因为GPU版本已经包含CPU功能。 最后,我需要总结这些信息,给出清晰的回答,并建议用户使用虚拟环境来管理不同版本的PyTorch,确保项目的兼容性和稳定性。</think>PyTorch无法在同一个Python环境中同时安装CPU和GPU版本。以下是具分析及解决方案: ### 一、版本冲突机制 PyTorch的CPU和GPU版本通过包名`torch`进行统一管理。安装时会根据后缀(如`cuXXX`表示CUDA版本)决定具类型: - CPU版本:例如`torch-1.10.0-cp37-cp37m-win_amd64.whl` - GPU版本:例如`torch-1.10.0+cu113-cp37-cp37m-win_amd64.whl` 由于包名相同,后安装的版本会直接覆盖前一个版本[^4]。例如: ```bash # 先安装CPU版本 pip install torch==1.10.0 # 再安装GPU版本会导致覆盖 pip install torch==1.10.0+cu113 ``` ### 二、推荐解决方案 使用虚拟环境隔离不同需求: 1. **Conda环境管理**(推荐): ```bash # 创建GPU环境 conda create -n pytorch_gpu python=3.8 conda activate pytorch_gpu pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 # 创建CPU环境 conda create -n pytorch_cpu python=3.8 conda activate pytorch_cpu pip install torch torchvision ``` 通过`conda activate`切换环境即可[^3] 2. **Docker容器方案**: ```dockerfile # GPU容器 FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime # CPU容器 FROM pytorch/pytorch:1.10.0-cpu ``` ### 三、版本兼容性验证 安装后可通过以下代码检测当前环境版本: ```python import torch print(torch.__version__) # 输出如1.10.0+cpu或1.10.0+cu113 print(torch.cuda.is_available()) # GPU版本返回True ``` ### 四、特殊需求处理 若需在GPU版本中使用CPU模式,可直接通过代码指定设备: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3,3).to(device) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值