关于矩阵的一些问题

1、关于矩阵快速幂

#define maxn 110  
struct Matrax{  
    int map[maxn][maxn];  
} per, A;  
int n,m;  
  
void init(){  
    for( int i = 0 ; i < n ; ++i ){  
        for( int j = 0 ; j < n ; ++j ){  
            scanf("%d",&A.map[i][j]);  
            A.map[i][j] %= m;  
            per.map[i][j] = ( i == j );  
        }  
    }  
}  
Matrax Multi( Matrax a , Matrax b ){ // a*b  
    Matrax c;  
    for( int i = 0 ; i < n ; ++i ){  
        for( int j = 0 ; j < n ; ++j ){  
            c.map[i][j] = 0;  
            for( int k = 0 ; k < n ; ++k )  
                c.map[i][j] += ( a.map[i][k] * b.map[k][j] ) % m;  
            c.map[i][j] %= m;  
        }  
    }  
    return c;  
}  
Matrax Power( int k ){ //A^k%m  
    Matrax ans = per, p = A;  
    while( k ){  
        if( k & 1 )  
            ans = Multi(ans, p);  
        p = Multi(p, p);  
        k >>= 1;  
    }  
    return ans;  
}  
Matrax Add( Matrax a , Matrax b ){ // a+b  
    Matrax c;  
    for( int i = 0 ; i < n ; ++i )  
        for( int j = 0 ; j < n ; ++j )  
            c.map[i][j] = ( a.map[i][j] + b.map[i][j] ) % m;  
    return c;  
}  
Matrax MatraxSum( int k ){ //A+A^2+A^3+ …+A^k   
    if( k == 1 )  
        return A;  
    Matrax temp , b;  
    temp = MatraxSum(k/2);  
    if( k & 1 ){  
        b = Power( k / 2 + 1 );  
        temp = Add( temp , Multi( temp , b ) );  
        temp = Add( temp , b );  
    }  
    else{  
        b = Power( k / 2 );  
        temp = Add( temp , Multi( temp , b ) );  
    }  
    return temp;  
} 

2、二维空间点的变换(平移、缩放、翻转、旋转)

    给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转

    这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为xy,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。

 

 

3、经典题目VOJ1049[送给圣诞夜的礼品]

    题目内容:列表共有m行,这m行都称作操作(不是序列),每一行有n个数字,这些数字互不相同而且每个数字都在1n之间。一开始,礼品的序列就是现在礼品所处的位置,也就是说,一开始礼品的序列就是1234……n;那么然后,我们看列表的第一行操作,设这一行操作的第i个数字为a[i],那么就把原来序列中的第a[i]个礼物放到现在这个序列的第i的位置上,然后组成新的礼物序列。然后,看列表的第二行操作……、第三行操作……一直到最后一行操作,重复上面的操作。当最后一行的操作结束,组成了的序列又按照第一行来操作,然后第二行操作……第三行操作……一直循环下去,直到一共操作了k行为止。

    题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31

    样例输入:

7 5 8

6 1 3 7 5 2 4

3 2 4 5 6 7 1

7 1 3 4 5 2 6

5 6 7 3 1 2 4

2 7 3 4 6 1 5

    样例输出:

2 4 6 3 5 1 7

    分析:首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:

 

置换k/m次就相当于在前面乘以k/m个这样的矩阵。

 

建立置换矩阵部分的代码:

#define maxn 110;
struct Matrax{
	int map[maxn][maxn];
}; // 置换矩阵 
int op[maxn][maxn];//存储操作序列 
int n,m,k;
void init(){ //"合并"后的矩阵 
	Matrax move;
	for( int i = 0 ; i < m ; ++i ){
		for( int j = 0 ; j < n ; ++j )
			scanf("%d",&op[i][j]);
		memset(move.map,0,sizeof(move.map));
		for( int j = 0 ; j < n ; ++j )
			move.map[j][op[i][j]-1] = 1;
	}
} 
Matrax LastMove(Matrax a){
	Matrax lastmove;
	for( int i = 0 ; i < (k%m) ; ++i ){
		memset(lastmove.map,0,sizeof(lastmove.map));
		for( int j = 0 ; j < n ; ++j )
			lastmove.map[j][op[i][j]-1] = 1;
		a = Multi(a,lastmove);
	}
	return a;
}

4、经典题目VOJ1067[Warcraft III 守望者的烦恼]

题目内容:她的闪烁技能是可以升级的,k级的闪烁技能最多可以向前移动k个监狱,一共有n个监狱要视察,她从入口进去,一路上有n个监狱,而且不会往回走,当然她并不用每个监狱都视察,但是她最后一定要到第n个监狱里去,因为监狱的出口在那里,但是她并不一定要到第1个监狱。她在拥有k级闪烁技能时视察n个监狱一共有多少种方案?

样例输入:

2

4

样例输出:

5

提示:

把监狱编号1 2 3 4,闪烁技能为2级,

一共有5种方案

1234

234

24

134

124

分析:

状态方程dp[n] = dp[n-k] + dp[n-k+1] + ... +dp[n-1]

由于n比较大  n<=2^31-1

要用矩阵来优化后面的状态转移

也就是矩阵

0 1 0 0    a     b

0 0 1 0 *   b =   c

0 0 0 1    c     d

1 1 1 1    d    a+b+c+d

然后在快速幂。。。

其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,其它地方都填0

 

5、矩阵Fibonacci

给定np,求第nFibonaccimod p的值,n不超过2^31

构造一个2 x 2的矩阵,使得它乘以(a,b)得到的结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x 2的矩阵自乘n次,再乘以(0,1)就可以得到第nFibonacci数了。

 

 

6、给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值

把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从ij经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

 

7、 用1 x 2的多米诺骨牌填满M x N的矩形有多少种方案,M<=5N<2^31,输出答案mod p的结果

 

我们以M=3为例进行讲解。假设我们把这个矩形横着放在电脑屏幕上,从右往左一列一列地进行填充。其中前n-2列已经填满了,第n-1列参差不齐。现在我们要做的事情是把第n-1列也填满,将状态转移到第n列上去。由于第n-1列的状态不一样(有8种不同的状态),因此我们需要分情况进行讨论。在图中,我把转移前8种不同的状态放在左边,转移后8种不同的状态放在右边,左边的某种状态可以转移到右边的某种状态就在它们之间连一根线。注意为了保证方案不重复,状态转移时我们不允许在第n-1列竖着放一个多米诺骨牌(例如左边第2种状态不能转移到右边第4种状态),否则这将与另一种转移前的状态重复。把这8种状态的转移关系画成一个有向图,那么问题就变成了这样:从状态111出发,恰好经过n步回到这个状态有多少种方案。比如,n=2时有3种方案,111->011->111111->110->111111->000->111,这与用多米诺骨牌覆盖3x2矩形的方案一一对应。这样这个题目就转化为了我们前面的例题6


8、经典题目POJ2778[DNA Sequence]

题目大意是,检测所有可能的nDNA串有多少个DNA串中不含有指定的病毒片段。合法的DNA只能由ACTG四个字符构成。题目将给出10个以内的病毒片段,每个片段长度不超过10。数据规模n<=2 000 000 000

ATC,AAA,GGC,CT这四个病毒片段为例,说明怎样像上面的题一样通过构图将问题转化为例题8。我们找出所有病毒片段的前缀,把nDNA分为以下7类:以AT结尾、以AA结尾、以GG结尾、以?A结尾、以?G结尾、以?C结尾和以??结尾。其中问号表示“其它情况”,它可以是任一字母,只要这个字母不会让它所在的串成为某个病毒的前缀。显然,这些分类是全集的一个划分(交集为空,并集为全集)。现在,假如我们已经知道了长度为n-1的各类DNA中符合要求的DNA个数,我们需要求出长度为n时各类DNA的个数。我们可以根据各类型间的转移构造一个边上带权的有向图。例如,从AT不能转移到AA,从AT转移到??4种方法(后面加任一字母),从?A转移到AA1种方案(后面加个A),从?A转移到??2种方案(后面加GC),从GG??2种方案(后面加C将构成病毒片段,不合法,只能加AT)等等。这个图的构造过程类似于用有限状态自动机做串匹配。然后,我们就把这个图转化成矩阵,让这个矩阵自乘n次即可。最后输出的是从??状态到所有其它状态的路径数总和。

/*
少用取模,那东西太耗时间了
*/
#include<cstdio>
#include<cstring>
const int NODE=13*13;
const int CH=4;
int tree[NODE][CH],cnt;
int word[NODE];
int fail[NODE];
int Que[NODE];
int num[150];
int m,n;
int matnum,matcal[NODE];
__int64 mm[NODE][NODE],r[NODE][NODE],tem[NODE][NODE];
void Ins(char *a,int val){
    int p=0;
    for(; *a; a++){
        int c=num[*a];
        if(!tree[p][c]){
            memset(tree[cnt],0,sizeof(tree[cnt]));//初始化新的节点
            word[cnt]=0;
            tree[p][c]=cnt++;
        }
        p=tree[p][c];
    }
    word[p]=val;//做一个标记,说明这是病毒串
}
void AC(){
    int *s=Que,*e=Que;
    for(int i=0; i<CH; ++i)
        if(tree[0][i]){
            fail[tree[0][i]]=0;//修改失败指针
            *e++=tree[0][i];
        }
    while(s!=e){
        int p=*s++;
        for(int i=0; i<CH; ++i){
            if(tree[p][i]){
                int v=tree[p][i];
                *e++=v;
                fail[v]=tree[fail[p]][i];
                word[v]|=word[fail[v]];//Wa了N次
            }
            else{
                 tree[p][i]=tree[fail[p]][i];
            }
        }
    }
}
char s[13];
void Input(){
    fail[0]=0;
    memset(tree[0],0,sizeof(tree[0]));//初始化根节点,开始都指向根节点
    //从1开始,0有特殊使用
    cnt=1;//已经有根节点,节点是从1<=i<cnt
    num['A']=0;
    num['T']=1;
    num['C']=2;
    num['G']=3;
    for(int i=1; i<=m; i++){
        scanf("%s",s);
        Ins(s,1);
    }
}
void init()//建立矩阵的关系{
    memset(mm,0,sizeof(mm));
    memset(matcal,0,sizeof(matcal));
    matnum=0;//矩阵从0<=i<matnum
    for(int i=0; i<cnt; ++i)
        if(word[i]==0)  matcal[i]=matnum++;
    for(int i=0; i<cnt; ++i)
        if(word[i]==0){
            for(int j=0; j<CH; ++j){
                if(word[tree[i][j]]==0){ //不是病毒串
                    mm[matcal[i]][matcal[tree[i][j]]]++;
                }
            }
        }
}
void Mul(__int64 a[NODE][NODE],__int64 b[NODE][NODE]){
    memset(tem,0,sizeof(tem));
    for(int i=0; i<matnum; ++i)
        for(int j=0; j<matnum; ++j){
            for(int k=0; k<matnum; ++k)
                tem[i][j]=tem[i][j]+a[i][k]*b[k][j];
            tem[i][j]=tem[i][j]%100000;
        }
}
void work(){
    for(int i=0; i<matnum; ++i)  r[i][i]=1;
    while(n){
        if(n&1){
            Mul(mm,r);
            memcpy(r,tem,sizeof(tem));
        }
        n>>=1;
        Mul(mm,mm);
        memcpy(mm,tem,sizeof(tem));
    }
    int res=0;
    for(int i=0; i<matnum; ++i)  res+=r[0][i];
    res=res%100000;
    printf("%d/n",res);
}
int main(){
    scanf("%d%d",&m,&n);
    Input();
    AC();
    init();
    work();
    return 0;
}

拓展:(关于根据表达式创建矩阵方法)

若有递推式:f(n) = a(1)f(n-1)+a(2)f(n-2)+a(3)f(n-3)+......+a(m)f(n-m),则可以转换为以下矩阵形式:



逆向思维

题意:

 对于给定的一个矩阵AA+A^2+A^3+...+A^K 是多少呢?

其中A^2 表示两个矩阵的乘积A*AA^3表示三个矩阵的乘积A*A*A,依此类推。求结果中的非0元素个数。

题解:

   平时一般都用矩阵来表示一个图,这里用图来表示一个矩阵。A^KA[i][j]表示从在这个图上i走了K步后可达到j

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>

using namespace std;

#define maxn 1005
#define inf 0x1fffff

bool reach[maxn][maxn];
int map[maxn][maxn];
char s[maxn];
int d[maxn],n;

struct pt{
    int d,x;
};

void bfs(int x){
    int i,j;
    pt now,next;
    queue<pt>q;
    now.x = x;
    now.d = 0;
    d[now.x] = now.d;
    q.push(now);
    while( !q.empty() ){
        now = q.front();
        q.pop();
        if( now.d > n+2 ) break;
        for( i = 1 ; i <= map[now.x][0] ; ++i ){
            next.x = map[now.x][i];
            next.d = now.d + 1;
            if( next.d < d[next.x] ){
                d[next.x] = next.d;
                q.push(next);
                reach[x][next.x] = 1;
            }
        }
    }
}

int main(){
    int m,k,i,x,y,z,j,sum;
    while( scanf("%d %d %s",&n,&m,s) != EOF ){
        memset(reach,0,sizeof(reach));
        for( i = 1 ; i <= n ; ++i )
            reach[i][i] = 1;
        memset(map,0,sizeof(map));
        for( i = 1 ; i <= m ; ++i ){
            scanf("%d %d %d",&x,&y,&z);
            x++,y++;
            if( z > 0 ){
                reach[x][y] = 1;
                map[x][++map[x][0]] = y;
            }
        }
        for( i = 1 ; i <= n ; ++i ){
            for( j = 1 ; j <= n ; ++j )
                d[j] = inf;
            bfs(i);
        }
        sum = 0;
        for( i = 1 ; i <= n ; ++i )
            for( j = 1 ; j <= n ; ++j )
                sum += reach[i][j];
        printf("%d\n",sum);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值