汉诺塔是经典的递归问题,但是每次碰到汉诺塔都不知道咋整,死记硬背也记不住,过一段时间看又楞了。
汉诺塔的由来以及原理这里就不赘述了,指路https://zh.wikipedia.org/wiki/%E6%B1%89%E8%AF%BA%E5%A1%94
刚看了一下,感觉理解还是有点难度,但是也不至于死记硬背的程度,话说数学好的人在大气层,我只在两层,好在两层也够用了
其实只要知道汉诺塔两层的用法就可以写出汉诺塔的解了,写出来当个备忘录,要是有个跟我数学一样差的人看到了,应该也可以帮上点忙了。
图例:
初始状态下两块圆盘,要把这两个圆盘按照当前的大小顺序放在最后一个柱子里,一次只能挪一块,且大块不能放在小块上面
那么应该最少的操作,就是把小块放到中间,大块放到最后,like
接下来就是把中间的小块再放到大块上,完成两层的操作
那么上代码:
def move(a, b, c):
if n == 1:
print(a, '-->', c)
else:
move(n-1, a, c, b)
move(1, a, b, c)
move(n-1, b, a, c)
这里的move(a, b, c)的函数作用 可以理解为打印汉诺塔的移动步骤,递归到最后,就是打印从哪里移动到哪里,也就是第一参数是从哪里出来,最后一个参数是到哪里去,中间的这个参数,只是传参而已。
所以我们只需要在if里面写出基础的步骤,也就是遍历到只有一个盘的时候我们的工作。
在else里面写上两个盘我们要怎么做:1.把a柱子上面的n-1块移到b柱子上
2.把a柱子上剩下的那个大块的移到c柱子上
3.把n-1块从b柱子上移到c柱子上
至于接下来的n-1块如果大于1,那它自己会递归把自己挪好的,放心吧