【刷题日记】汉诺塔——我恨我不是数学家

汉诺塔是经典的递归问题,但是每次碰到汉诺塔都不知道咋整,死记硬背也记不住,过一段时间看又楞了。

汉诺塔的由来以及原理这里就不赘述了,指路https://zh.wikipedia.org/wiki/%E6%B1%89%E8%AF%BA%E5%A1%94

刚看了一下,感觉理解还是有点难度,但是也不至于死记硬背的程度,话说数学好的人在大气层,我只在两层,好在两层也够用了

其实只要知道汉诺塔两层的用法就可以写出汉诺塔的解了,写出来当个备忘录,要是有个跟我数学一样差的人看到了,应该也可以帮上点忙了。

图例:

 初始状态下两块圆盘,要把这两个圆盘按照当前的大小顺序放在最后一个柱子里,一次只能挪一块,且大块不能放在小块上面

那么应该最少的操作,就是把小块放到中间,大块放到最后,like

接下来就是把中间的小块再放到大块上,完成两层的操作

 那么上代码:

def move(a, b, c):
    if n == 1:
        print(a, '-->', c)
    else:
        move(n-1, a, c, b)
        move(1, a, b, c)
        move(n-1, b, a, c)

 这里的move(a, b, c)的函数作用 可以理解为打印汉诺塔的移动步骤,递归到最后,就是打印从哪里移动到哪里,也就是第一参数是从哪里出来,最后一个参数是到哪里去,中间的这个参数,只是传参而已。

所以我们只需要在if里面写出基础的步骤,也就是遍历到只有一个盘的时候我们的工作。

在else里面写上两个盘我们要怎么做:1.把a柱子上面的n-1块移到b柱子上

                                                             2.把a柱子上剩下的那个大块的移到c柱子上

                                                             3.把n-1块从b柱子上移到c柱子上

至于接下来的n-1块如果大于1,那它自己会递归把自己挪好的,放心吧

汉诺塔问题是一个经典的问题,源于印度一个古老传说。问题是将一根柱子上的64片黄金圆盘按照大小顺序重新摆放到另一根柱子上,且在任何时候,小圆盘上不能放大圆盘,且一次只能移动一个圆盘。 汉诺塔问题的循环算法可以使用迭代的方式来解决。下面是一个示例代码: ```cpp #include <iostream> #include <stack> #include <string> using namespace std; void hanoiTowerIterative(int N, string from, string to, string help) { stack<int> s1, s2, s3; int moves = (1 << N) - 1; for (int i = N; i > 0; i--) { s1.push(i); } if (N % 2 == 0) { swap(s2, s3); } for (int i = 1; i <= moves; i++) { if (i % 3 == 1) { if (s1.empty() || (!s2.empty() && s2.top() < s1.top())) { cout << "Move " << s2.top() << " from " << to << " to " << from << endl; s1.push(s2.top()); s2.pop(); } else { cout << "Move " << s1.top() << " from " << from << " to " << to << endl; s2.push(s1.top()); s1.pop(); } } else if (i % 3 == 2) { if (s1.empty() || (!s3.empty() && s3.top() < s1.top())) { cout << "Move " << s3.top() << " from " << help << " to " << from << endl; s1.push(s3.top()); s3.pop(); } else { cout << "Move " << s1.top() << " from " << from << " to " << help << endl; s3.push(s1.top()); s1.pop(); } } else { if (s2.empty() || (!s3.empty() && s3.top() < s2.top())) { cout << "Move " << s3.top() << " from " << help << " to " << to << endl; s2.push(s3.top()); s3.pop(); } else { cout << "Move " << s2.top() << " from " << to << " to " << help << endl; s3.push(s2.top()); s2.pop(); } } } } int main() { hanoiTowerIterative(3, "A", "B", "C"); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值