如果{Eₙ}都是可测集,且他们处处收敛于E. 那么E也是可测集. 本证明是一个简要的证明。这两个结论这里没有直接给出。因为如果给出这两个结论的证明就需要更多篇幅。其中1和3需要读者自行查找资料证明。NOTE: 所谓集合的处处收敛,是说得他们的特征函数处处收敛.
两个不相交的闭集并不能保证两个集合可分 现在我们可以来讨论,如果两个集合不相交且两个集合都是闭集的时候,并不能说明两个集合不可分。也就是说即便两个集合都是闭集且不相交,他们也可能不可分。或者我们用一种不太严谨的说法,两个集合的并集没有缝隙,那么就说明两个集合不可分。而这个缝隙的数学含义就是。本文就构造出两个例子,一个是在有理数集合里面构造出两个集合, 一个是在。如果一个集合的聚点都属于这个集合本身吗,那么这个集合是一个闭集。也就是说这两个例子都说明,即便两个都是闭集且交集为空,这两个集合依然可能是不可分。同理,这两个集合也是闭集,且交集为空集。
A的闭包+B的闭包包含于A+B的闭包 Let X be a topological vector space. If A⊂XA\subset XA⊂X and B⊂XB\subset XB⊂X, then A‾+B‾⊂A+B‾\overline{A}+\overline{B}\subset \overline{A+B}A+B⊂A+B.Take a∈A‾a\in \overline{A}a∈A, b∈B‾b\in \overline{B}b∈B; Let WWW be a neighborhood of a+ba+ba+b.There ar
如果一个集合的Lebesgue测度为0, 那么它的子集也是Lebesgue可测的并且其测度也为0. a subset of a zero(0) Lebesgue measure set is Lebesgue measurable
Egoroff‘s Theorem Assume E has finite Lebesgue measure. Let {fn}\{f_n\}{fn} be a sequence of Lebesgue measurable functions on EEE that converges pointwise on EEE to a Real-Valued function fff. Then for each ϵ>0\epsilon>0ϵ>0, there is a closed set FFF contained in EEE for
If B is a local base for X, then every member of B contains the closure of some member of B Theorem: If B is a local base for a topological vector space X, then every member of B contains the closure of some member of B::: {.CJK}UTF8gbsnIf B\mathcal{B}B is a local base for a topological vector space XXX, then every member of B\mathcal{B}B contai
三门问题(一个有趣的概率题) ::: CJKUTF8gbsn三门问题是一个十分有趣的问题。 它讲述的是这样一个问题。 假如有一档节目。节目里面有设置有三道门, 其中一道门里面有奖品。主持人会让你选一道门。当你做出选择之后,主持人会将你没有选择的两扇门中选择一个空门打开(主持人是知道哪扇门没有礼物的)。接下来主持人会问你,需要改变自己的选择么?那么问题也就来了, 假如你想使得自己的获奖概率最大化,你是选择更换自己的选择还是保持自己的选择? 而中奖概率是多少呢?穷举法礼物在1号门第一次选择1号门主持人选择开
组合数学中将物体放入盒子中的四种情况 在实现生活中, 如何将物体分配到盒子里面是一个非常普通且常见的一个问题。要解决这个问题需要考虑几种清空。首先我们把这个问题分成四个类别的的问题。将不同的物体分配到不同的盒子中将相同的物体分配到不同的盒子中将不同的物体分配到相同的盒子中将相同的物体分配到相同的盒子中将不同的物体分配到不同的盒子中举例:如果将52张扑克开(一套扑克牌)分配给4个玩家, 每人5张牌。有多少种分配方法?解答:这个问题就是典型的将不同的物体分配到不同的盒子中的问题。要解决这个问题其实很
有限值函数 定义(Finite Valued Function) In the Principles of Mathematical Analysis, Rudin introduced a concept named finite valued function. Many students get confused with this terminology. Does finite valued mean bounded? The answer is no. Before we introduce this concept, we have to get to kn
Simpson‘s rule Error analysis (辛普森积分方法的误差分析) IntroductionSimpson’s rule is an integral approximate method. Instead of using theoriginal function f(x)f(x)f(x) to compute the integration, it uses apolynomial function. If we have three points a,m,ba,m,ba,m,b and their valuesf(a),f(m),f(b)f(a), f(m),
数学分析第七课(复数) The Complex Field. We firstly introduce the definition of complexnumbers.Definiton: A complex numbers is an ordered pair (a,b)(a,b)(a,b) of realnumbers. (a,b)(a,b)(a,b) and (b,a)(b,a)(b,a) are regarded as distinct if a≠bae ba=b. Letx=(a,b),y=(c,d)x
数学分析第六课(域以及域的性质) In this lecture, we shall introduce an important concept which is calledfield.Definition: A field is a set FFF with two operations, called addtionand multiplication, which satisfy the following so-called fieldaxionms.Axioms for addition∀x,y(x,y∈F
数学分析第五课(关于实数的4个定理) We will introduce four theorems in R\mathbb{R}R, and they are suchobvious that you even don’t realise that they need proofs.Theorem 1: If x∈R,y∈Rx\in \mathbb{R}, y\in \mathbb{R}x∈R,y∈R and x>0x>0x>0, thenthere is a positive integer nnn such tha
数学分析第四课(从有理数开始构建实数) Here goes the most important theory, and it is a theorem about realnumbers. This theorem explains the superiority of R\mathbb{R}R.Theorem There exists an ordered field R\mathbb{R}R which has theleast-upper-bound property. Moreover, R\mathbb{R}R contains
数学分析第三课(上下确界的概念) Definition Suppose SSS is an ordered set, E⊂SE\subset SE⊂S, and EEE isbounded above. Supose there exists an α∈S\alpha\in Sα∈S with the followingproperties:α\alphaα is an upper bound of EEEIf γ<α\gamma<\alphaγ<α then γ\gammaγ is not an uppe
数学分析第二课(有理数的缺点) As all we know that Expanding natural numbers N\mathbb{N}N a little bityields integers Z\mathbb{Z}Z. Similarily, Expanding integersZ\mathbb{Z}Z a little bit generates Q\mathbb{Q}Q. But, what about realnumbers R\mathbb{R}R ? How to get real numbers R\mat
数学分析第一课(数学分析和微积分的桥梁) What is the foundation of differential calculus? We will discover itfrom one of the most important theorem in differential calculus whichcalled Mean-Value theorem. In order to prove this theorem, we only needseveral steps.THEOREM 1—The Extreme Value