【前缀和】【动态规划】:1000合并石头的最低成本

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
动态规划汇总

LeetCode 1000合并石头的最低成本

有 n 堆石头排成一排,第 i 堆中有 stones[i] 块石头。
每次 移动 需要将 连续的 k 堆石头合并为一堆,而这次移动的成本为这 k 堆中石头的总数。
返回把所有石头合并成一堆的最低成本。如果无法合并成一堆,返回 -1 。
示例 1:
输入:stones = [3,2,4,1], K = 2
输出:20
解释:
从 [3, 2, 4, 1] 开始。
合并 [3, 2],成本为 5,剩下 [5, 4, 1]。
合并 [4, 1],成本为 5,剩下 [5, 5]。
合并 [5, 5],成本为 10,剩下 [10]。
总成本 20,这是可能的最小值。
示例 2:
输入:stones = [3,2,4,1], K = 3
输出:-1
解释:任何合并操作后,都会剩下 2 堆,我们无法再进行合并。所以这项任务是不可能完成的。.
示例 3:
输入:stones = [3,5,1,2,6], K = 3
输出:25
解释:
从 [3, 5, 1, 2, 6] 开始。
合并 [5, 1, 2],成本为 8,剩下 [3, 8, 6]。
合并 [3, 8, 6],成本为 17,剩下 [17]。
总成本 25,这是可能的最小值。
提示:
n == stones.length
1 <= n <= 30
1 <= stones[i] <= 100
2 <= k <= 30

分析

dp[begin][end]记录stones[begin,end)合并后的最小得分。时间复杂度O(nnn),状态数:n*n,转移状态时间复杂度O(n)。

状态转移

假定stones[begin,end)是由stone[begin,m)和stone[m,end)合并成的,m取值范围(begin,end)。stone[begin,m)简称左堆,stone[m,end)简称右堆。

左右两堆剩余石头数之和小于kdp[begin][end] = dp[begin][m]+dp[m][end]
左右两堆剩余石头数之和等于于kdp[begin][end] = dp[begin][m]+dp[m][end]+vPreSum[begin][end],石头发生了合并
左右两堆剩余石头数之和大于于k抛弃

左右两堆剩余石头数之和大于于k

抛弃左右两堆剩余石头数之和大于于k,也可以找到最优解。

最后一轮只有k个石头,故不会超过k
倒数第二轮只有2k-1个石头,假定其范围是[i0,j0),倒数第二轮是[i1,j1), 那么[i0,j0)会合并,这时两堆石头恰好是k,故不会超过k

剩余石头数

每次合并后,石头数减少k-1。所有石头数减1,再对k-1求求余,再加1。
注意:先判断石头数是否是1,不是直接返回-1。

代码

核心代码

class Solution {
public:
	int mergeStones(vector<int>& stones, int K) {
		m_c = stones.size();
		if (1 != RemainLen(m_c,K))
		{
			return -1;
		}
		vector<int> vPreSum = { 0 };
		for (const auto& n : stones)
		{
			vPreSum.emplace_back(n + vPreSum.back());
		}
		vector<vector<int>> dp(m_c,vector<int>(m_c+1));//dp[i][j] 表示合并stones[i,j)的最小成本
		for (int len = 2; len <= m_c; len++)
		{
			for (int begin = 0; begin + len <= m_c; begin++)
			{
				const int end = begin + len;
				int iMin = INT_MAX;
				for (int m = begin + 1; m < end; m++)
				{
					const int iAdd = RemainLen(m - begin, K) + RemainLen(end - m, K);
					if (iAdd > K)
					{
						continue;
					}
					int cur = dp[begin][m] + dp[m][end];
					iMin = min(iMin, cur);
				}
				
				if (1 == RemainLen(len, K))
				{
					iMin += vPreSum[end] - vPreSum[begin];
				}
				dp[begin][end] = iMin;
			}			
		}
		return dp.front().back();
	}
	int RemainLen(int len, int k)
	{
		return 1+(len - 1) % (k - 1);
	}
	int m_c;
};

测试代码

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		assert(v1[i] == v2[i]);
	}
}

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}








int main()
{
	vector<int> stones = { 3,5,1,2,6 };
	int k = 3;
	int res = Solution().mergeStones(stones, k);
	Assert(25, res);

	stones = { 3,2,4,1 };
	 k = 2;
	 res = Solution().mergeStones(stones, k);
	Assert(20, res); 

	stones = { 1,2,3,4,5,6,7 };
	k = 3;
	res = Solution().mergeStones(stones, k);
	Assert(49, res);

	stones = { 1,2,3,4,5,6,7 };
	k = 4;
	res = Solution().mergeStones(stones, k);
	Assert(38, res);

	stones = { 1,2,3,4,5,6,7,8,9 };
	k = 5;
	res = Solution().mergeStones(stones, k);
	Assert(60, res);
	//
	stones = { 9, 8, 7, 6, 5, 4, 3, 2, 1 };
	k = 2;
	res = Solution().mergeStones(stones, k);
	Assert(135, res);

	stones = { 9,8,7,6,5,4,3,2,1 };
	k = 3;
	res = Solution().mergeStones(stones, k);
	Assert(87, res);

	stones = { 10,9,8,7,6,5,4,3,2,1 };
	k = 4;
	res = Solution().mergeStones(stones, k);
	Assert(91, res);

	//
	stones = { 5,8,7,6,5,12,13,14,4,3,2,1,2 };
	k = 4;
	res = Solution().mergeStones(stones, k);
	Assert(155, res);

	stones = { 2,8,7,6,5,12,13,14,4,3,2,1,2 };
	k = 5;
	res = Solution().mergeStones(stones, k);
	Assert(119, res);
	//CConsole::Out(res);
}

2024年3月14

转移方程优化:
只需要枚举合并后的第一堆石头,第一堆石头原始堆数len1只能是:1, 1+(k-1) ,1 + 2*(k-1) ⋯ \cdots
注意:len1 必须小于len

class Solution {
public:
	int mergeStones(vector<int>& stones, int K) {
		m_c = stones.size();
		if (1 != RemainLen(m_c, K))
		{
			return -1;
		}
		vector<int> vPreSum = { 0 };
		for (const auto& n : stones)
		{
			vPreSum.emplace_back(n + vPreSum.back());
		}
		vector<vector<int>> dp(m_c, vector<int>(m_c + 1));//dp[i][j] 表示合并stones[i,j)的最小成本
		for (int len = 2; len <= m_c; len++)
		{
			for (int begin =0 ; begin+len <= m_c ;begin++)
			{
				const int end = begin + len;
				int iMin = INT_MAX;
				for (int len1 = 1; len1 < len; len1 += (K - 1))
				{
					iMin = min(iMin, dp[begin][begin + len1] + dp[begin + len1][end]);
				}
				if (1 == RemainLen(len, K))
				{
					iMin += vPreSum[end] - vPreSum[begin];
				}
				dp[begin][end] = iMin;
			}
		}
		return dp.front().back();
	}
	int RemainLen(int len, int k)
	{
		return 1 + (len - 1) % (k - 1);
	}
	int m_c;
};

旧版代码

 template<class T>
 void MinSelf(T* seft, const T& other)
 {
	 *seft = min(*seft, other);
 }
class Solution {
 public:
	 int mergeStones(vector<int>& stones, int k) {
		 m_k = k;
		 m_c = stones.size();
		 m_dp.assign(m_c + 1, vector<vector<int>>(m_c, vector<int>(k + 1, 1000 * 1000 * 100)));

		 vector<int> vPreSum(1);
		 for (const auto& stone : stones)
		 {
			 vPreSum.push_back(vPreSum.back() + stone);
		 }
		 for (int pos = 0; pos + 1 - 1 < m_c; pos++)
		 {
			 m_dp[1][pos][1] = 0;
		 }
		 for (int len = 2; len <= m_c; len++)
		 {
			 for (int pos = 0; pos+len <= m_c; pos++)
			 {
				 //int iEnd = pos + len - 1;
				 for (int iHeapNum = 2; iHeapNum <= k; iHeapNum++)
				 {
					 for (int iPreLen = 1; iPreLen < len; iPreLen += k - 1)
					 {
						 MinSelf(&m_dp[len][pos][iHeapNum], m_dp[iPreLen][pos][1] + m_dp[len - iPreLen][pos + iPreLen][iHeapNum - 1]);
					 }
				 }
				 m_dp[len][pos][1] = m_dp[len][pos][k] + vPreSum[pos + len] - vPreSum[pos];
			 }			
		 }		

		 return (m_dp[m_c][0][1] >= 1000 * 1000 * 100) ? -1 : m_dp[m_c][0][1];
	 }
	 
	 int m_k;
	 int m_c;
	 vector<vector<vector<int>>> m_dp;
 };

旧版代码2

 template<class T>
 void MinSelf(T* seft, const T& other)
 {
	 *seft = min(*seft, other);
 }

 class Solution {
 public:
	 int mergeStones(vector<int>& stones, int k) {
		 m_k = k;
		 m_c = stones.size();
		 m_dp.assign(m_c + 1, vector<int>(m_c, ( 1000 * 1000 * 100)));

		 if ((m_c-1) % (k - 1) != 0)
		 {
			 return -1;
		 }

		 vector<int> vPreSum(1);
		 for (const auto& stone : stones)
		 {
			 vPreSum.push_back(vPreSum.back() + stone);
		 }
		 for (int pos = 0; pos + 1 - 1 < m_c; pos++)
		 {
			 m_dp[1][pos] = 0;
		 }
		 for (int len = 2; len <= m_c; len++)
		 {
			 for (int pos = 0; pos+len <= m_c; pos++)
			 {
				 for (int iPreLen = 1; iPreLen < len; iPreLen += k - 1)
				 {
					 MinSelf(&m_dp[len][pos], m_dp[iPreLen][pos] + m_dp[len - iPreLen][pos + iPreLen]);
				 }
				 if ((len-1) % (k - 1) == 0)
				 {
					 m_dp[len][pos] +=  vPreSum[pos + len] - vPreSum[pos];
				 }
			 }			
		 }		

		 return (m_dp[m_c][0] >= 1000 * 1000 * 100) ? -1 : m_dp[m_c][0];
	 }
	 
	 int m_k;
	 int m_c;
	 vector<vector<int>> m_dp;
 };

旧版代码三

class Solution {
public:
int mergeStones(vector& stones, int k) {
m_c = stones.size();
if (0 != (m_c - 1) % (k-1))
{
return -1;
}
vector vPreSum(1);
for (const auto& n : stones)
{
vPreSum.emplace_back(vPreSum.back() + n);
}
vector<vector> vLenBegin(m_c + 1, vector(m_c));
for (int len = k; len <= m_c; len++)
{
for (int begin = 0; begin + len - 1 < m_c; begin++)
{
int iMaxPreScore = INT_MAX;
for (int lLen = 1; lLen < len; lLen += (k - 1))
{
int rLen = len - lLen;
iMaxPreScore = min(iMaxPreScore, vLenBegin[lLen][begin] + vLenBegin[rLen][begin + lLen]);
}
if (0 == (len - 1) % (k - 1))
{
iMaxPreScore += vPreSum[begin + len] - vPreSum[begin];
}
vLenBegin[len][begin] = iMaxPreScore ;
}
}
return vLenBegin.back().front();
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

鄙人想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境:

VS2022 C++17

做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闻缺陷则喜何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值