【线段树 有序映射】715. Range 模块

算法可以发掘本质,如:
一,若干师傅和徒弟互有好感,有好感的师徒可以结对学习。师傅和徒弟都只能参加一个对子。如何让对子最多。
二,有无限多1X2和2X1的骨牌,某个棋盘若干格子坏了,如何在没有坏的格子放足够多骨牌。
三,某个单色图,1表示前前景,0表示后景色。每次操作可以将一个1,变成0。如何在最少得操作情况下,使得没有两个1相邻(四连通)。
四,若干路人,有些人是熟人,如何选出最多的人参加实验。为了避免熟人影响实验的效果,参加的人不能是熟人。
一二是二分图的最大匹配,三是二分图的最小点覆盖,四是二分图最大独立集。 而这三者是等效问题。

本文涉及知识点

线段树 有序映射
线段树:就求一乐乎,难写。在超时的边缘。

LeetCode715. Range 模块

Range模块是跟踪数字范围的模块。设计一个数据结构来跟踪表示为 半开区间 的范围并查询它们。
半开区间 [left, right) 表示所有 left <= x < right 的实数 x 。
实现 RangeModule 类:

RangeModule() 初始化数据结构的对象。
void addRange(int left, int right) 添加 半开区间 [left, right),跟踪该区间中的每个实数。添加与当前跟踪的数字部分重叠的区间时,应当添加在区间 [left, right) 中尚未跟踪的任何数字到该区间中。
boolean queryRange(int left, int right) 只有在当前正在跟踪区间 [left, right) 中的每一个实数时,才返回 true ,否则返回 false 。
void removeRange(int left, int right) 停止跟踪 半开区间 [left, right) 中当前正在跟踪的每个实数。

示例 1:

输入
[“RangeModule”, “addRange”, “removeRange”, “queryRange”, “queryRange”, “queryRange”]
[[], [10, 20], [14, 16], [10, 14], [13, 15], [16, 17]]
输出
[null, null, null, true, false, true]

解释
RangeModule rangeModule = new RangeModule();
rangeModule.addRange(10, 20);
rangeModule.removeRange(14, 16);
rangeModule.queryRange(10, 14); 返回 true (区间 [10, 14) 中的每个数都正在被跟踪)
rangeModule.queryRange(13, 15); 返回 false(未跟踪区间 [13, 15) 中像 14, 14.03, 14.17 这样的数字)
rangeModule.queryRange(16, 17); 返回 true (尽管执行了删除操作,区间 [16, 17) 中的数字 16 仍然会被跟踪)

提示:
1 <= left < right <= 109
在单个测试用例中,对 addRange 、 queryRange 和 removeRange 的调用总数不超过 104 次

代码

template<class TSave, class TRecord >
class CRangUpdateLineTree 
{
protected:
	virtual void OnQuery(TSave& save, int iSaveLeft, int iSaveRight) = 0;
	virtual void OnUpdate(TSave& save, int iSaveLeft,int iSaveRight, const TRecord& update) = 0;
	virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, int iSaveLeft, int iSaveRight) = 0;
	virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord) = 0;
};


template<class TSave, class TRecord >
class CTreeRangeLineTree : public CRangUpdateLineTree<TSave, TRecord>
{
protected:
	struct CTreeNode
	{
		int Cnt()const { return m_iMaxIndex - m_iMinIndex + 1; }
		int m_iMinIndex;
		int m_iMaxIndex;
		TRecord record;
		TSave data;
		CTreeNode* m_lChild = nullptr, * m_rChild = nullptr;
	};
	CTreeNode* m_root;
	TSave m_tDefault;
	TRecord m_tRecordDef;
public:
	CTreeRangeLineTree(int iMinIndex, int iMaxIndex, TSave tDefault,TRecord tRecordDef) {
		m_tDefault = tDefault;
		m_tRecordDef = tRecordDef;
		m_root = CreateNode(iMinIndex, iMaxIndex);
	}
	void Update(int iLeftIndex, int iRightIndex, TRecord value)
	{
		Update(m_root, iLeftIndex, iRightIndex, value);
	}
	TSave QueryAll() {
		return m_root->data;
	}
	void Query(int leftIndex, int leftRight) {
		Query(m_root, leftIndex, leftRight);
	}
protected:
	void Query(CTreeNode* node, int iQueryLeft, int iQueryRight) {
		if ((node->m_iMinIndex >= iQueryLeft) && (node->m_iMaxIndex <= iQueryRight)) {
			this->OnQuery(node->data,node->m_iMinIndex,node->m_iMaxIndex);
			return;
		}
		if (1 == node->Cnt()) {//没有子节点
			return;
		}
		CreateChilds(node);
		Fresh(node);
		const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;
		if (mid >= iQueryLeft) {
			Query(node->m_lChild, iQueryLeft, iQueryRight);
		}
		if (mid + 1 <= iQueryRight) {
			Query(node->m_rChild, iQueryLeft, iQueryRight);
		}
	}
	void Update(CTreeNode* node, int iOpeLeft, int iOpeRight, TRecord value)
	{
		const int& iSaveLeft = node->m_iMinIndex;
		const int& iSaveRight = node->m_iMaxIndex;
		if ((iOpeLeft <= iSaveLeft) && (iOpeRight >= iSaveRight))
		{
			this->OnUpdate(node->data, iSaveLeft, iSaveRight, value);
			this->OnUpdateRecord(node->record, value);
			return;
		}
		if (1 == node->Cnt()) {//没有子节点
			return;
		}
		CreateChilds(node);
		Fresh(node);
		const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;
		if (mid >= iOpeLeft) {
			this->Update(node->m_lChild, iOpeLeft, iOpeRight, value);
		}
		if (mid + 1 <= iOpeRight) {
			this->Update(node->m_rChild, iOpeLeft, iOpeRight, value);
		}
		// 如果有后代,至少两个后代
		this->OnUpdateParent(node->data, node->m_lChild->data, node->m_rChild->data,node->m_iMinIndex,node->m_iMaxIndex);
	}
	void CreateChilds(CTreeNode* node) {
		if (nullptr != node->m_lChild) { return; }
		const int iSaveLeft = node->m_iMinIndex;
		const int iSaveRight = node->m_iMaxIndex;
		const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;
		node->m_lChild = CreateNode(iSaveLeft, mid);
		node->m_rChild = CreateNode(mid + 1, iSaveRight);
	}
	CTreeNode* CreateNode(int iMinIndex, int iMaxIndex) {
		CTreeNode* node = new CTreeNode;
		node->m_iMinIndex = iMinIndex;
		node->m_iMaxIndex = iMaxIndex;
		node->data = m_tDefault;
		node->record = m_tRecordDef;
		return node;
	}
	void Fresh(CTreeNode* node)
	{
		if (m_tRecordDef == node->record)
		{
			return;
		}
		CreateChilds(node);
		Update(node->m_lChild, node->m_lChild->m_iMinIndex, node->m_lChild->m_iMaxIndex, node->record);
		Update(node->m_rChild, node->m_rChild->m_iMinIndex, node->m_rChild->m_iMaxIndex, node->record);
		node->record = m_tRecordDef;
	}
};

template<class TSave=int, class TRecord =int >
class CMyTreeRangeLineTree : public CTreeRangeLineTree<TSave, TRecord>
{	
public:
	using CTreeRangeLineTree<TSave, TRecord>::CTreeRangeLineTree;
	bool queryRange(int left, int right) {
		m_bHas = true;
		CTreeRangeLineTree<TSave, TRecord>::Query(left, right);
		return m_bHas;
	}
protected:
	bool m_bHas = true;
	virtual void OnQuery(TSave& save, int iSaveLeft, int iSaveRight) override
	{
		m_bHas &= (save == (iSaveRight - iSaveLeft + 1));
	}
	virtual void OnUpdate(TSave& save, int iSaveLeft, int iSaveRight, const TRecord& update) override
	{ 
		save = update*(iSaveRight-iSaveLeft+1);
	}
	virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, int iSaveLeft, int iSaveRight) override
	{
		par = left + r;
	}
	virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord) override
	{
		old = newRecord;
	}
};

class RangeModule {
public:
	RangeModule() :m_treeLine(1, 1'000'000'000, 0, -1) {

	}

	void addRange(int left, int right) {
		m_treeLine.Update(left, right-1, 1);
	}

	bool queryRange(int left, int right) {
		return m_treeLine.queryRange(left, right - 1);
	}

	void removeRange(int left, int right) {
		m_treeLine.Update(left, right-1, 0);
	}
	CMyTreeRangeLineTree<> m_treeLine;
};

有序映射

class RangeModule {
public:
	RangeModule() {

	}

	void addRange(int left, int right) {
		auto it1 = m_mLeftRight.lower_bound(left);
		auto it2 = m_mLeftRight.upper_bound(right);
		if (it1 != m_mLeftRight.begin())
		{
			auto tmp = it1;
			--tmp;
			if (tmp->second >= left)
			{
				left = tmp->first;
				--it1;
			}
		}
		if (it2 != m_mLeftRight.begin())
		{
			auto tmp = it2;
			--tmp;
			if (tmp->second > right)
			{
				right = tmp->second;
			}
		}
		m_mLeftRight.erase(it1, it2);
		m_mLeftRight[left] = right;
	}

	bool queryRange(int left, int right) {
		auto it1 = m_mLeftRight.upper_bound(left);
		if (it1 != m_mLeftRight.begin())
		{
			auto tmp = it1;
			tmp--;
			return tmp->second >= right;
		}
		return false;
	}

	void removeRange(int left, int right) {
		auto it1 = m_mLeftRight.lower_bound(left);
		auto it2 = m_mLeftRight.upper_bound(right);
		int iNewLeft = -1;
		if (it1 != m_mLeftRight.begin())
		{
			auto tmp = it1;
			--tmp;
			if (tmp->second >= left)
			{
				iNewLeft = tmp->first;
			}
		}
		int iNewRight = -1;
		if (it2 != m_mLeftRight.begin())
		{
			auto tmp = it2;
			--tmp;
			if (tmp->second > right)
			{
				iNewRight = tmp->second;
			}
		}
		m_mLeftRight.erase(it1, it2);
		if (-1 != iNewLeft)
		{
			m_mLeftRight[iNewLeft] = left;
		}
		if (-1 != iNewRight)
		{
			m_mLeftRight[right] = iNewRight;
		}
	}
	std::map<int, int> m_mLeftRight;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业

。也就是我们常说的专业的人做专业的事。 |
|如果程序是一条龙,那算法就是他的是睛|

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闻缺陷则喜何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值