【C++BFS】1462. 课程表 IV

本文涉及知识点

C++BFS算法

LeetCode1462. 课程表 IV

你总共需要上 numCourses 门课,课程编号依次为 0 到 numCourses-1 。你会得到一个数组 prerequisite ,其中 prerequisites[i] = [ai, bi] 表示如果你想选 bi 课程,你 必须 先选 ai 课程。
有的课会有直接的先修课程,比如如果想上课程 1 ,你必须先上课程 0 ,那么会以 [0,1] 数对的形式给出先修课程数对。
先决条件也可以是 间接 的。如果课程 a 是课程 b 的先决条件,课程 b 是课程 c 的先决条件,那么课程 a 就是课程 c 的先决条件。
你也得到一个数组 queries ,其中 queries[j] = [uj, vj]。对于第 j 个查询,您应该回答课程 uj 是否是课程 vj 的先决条件。
返回一个布尔数组 answer ,其中 answer[j] 是第 j 个查询的答案。
示例 1:

在这里插入图片描述

输入:numCourses = 2, prerequisites = [[1,0]], queries = [[0,1],[1,0]]
输出:[false,true]
解释:课程 0 不是课程 1 的先修课程,但课程 1 是课程 0 的先修课程。
示例 2:

输入:numCourses = 2, prerequisites = [], queries = [[1,0],[0,1]]
输出:[false,false]
解释:没有先修课程对,所以每门课程之间是独立的。
示例 3:

在这里插入图片描述

输入:numCourses = 3, prerequisites = [[1,2],[1,0],[2,0]], queries = [[1,0],[1,2]]
输出:[true,true]

提示:

2 <= numCourses <= 100
0 <= prerequisites.length <= (numCourses * (numCourses - 1) / 2)
prerequisites[i].length == 2
0 <= ai, bi <= n - 1
ai != bi
每一对 [ai, bi] 都 不同
先修课程图中没有环。
1 <= queries.length <= 104
0 <= ui, vi <= n - 1
ui != vi

大致步骤

一,通过BFS枚举各节点的后续节点。vis[i][j]表示i是否是j的前置节点。
二,依次处理各出现。
总时间复杂度:O(n3)

C++BFS

BFS的预处理:生成邻接表neiBo。
BFS的状态表示:leves[0] = {root} leves[i]记录root 的i级后续节点。空间复杂度:O(n)
BFS的状态表示:通过next枚举cur的后续节点。时间复杂度:O(nn)
BFS的初始状态:leves[0] = {root}
BFS的返回值:无
BFS的出重:vis[i]

代码

核心代码

class Solution {
		public:
			vector<bool> checkIfPrerequisite(int N, vector<vector<int>>& prerequisites, vector<vector<int>>& queries) {
				vector<vector<int>> neiBo(N);
				for (const auto& v : prerequisites) {
					neiBo[v[0]].emplace_back(v[1]);
				}
				vector<vector<bool>> vis(N, vector<bool>(N));
				auto BFS = [&](int root, vector<bool>& vis) {
					vis[root] = true;
					queue<int> que;
					que.emplace(root);
					while (que.size()) {
						const auto cur = que.front();
						que.pop();
						for (const auto& next : neiBo[cur]) {
							if (vis[next]) { continue; }
							vis[next] = true;
							que.emplace(next);
						}
					}
				};
				for (int i = 0; i < N; i++) {
					BFS(i, vis[i]);
				}
				vector<bool> ret;
				for (const auto& v : queries) {
					ret.emplace_back(vis[v[0]][v[1]]);
				}
				return ret;
			}
		};

单元测试

int numCourses;
		vector<vector<int>> prerequisites, queries;
		TEST_METHOD(TestMethod11)
		{
			numCourses = 2, prerequisites = { {1,0} }, queries = { {0,1},{1,0} };
			auto res = Solution().checkIfPrerequisite(numCourses, prerequisites, queries);
			AssertEx(vector<bool>{false,true}, res);
		}
		TEST_METHOD(TestMethod12)
		{
			numCourses = 2, prerequisites = {}, queries = { {1,0},{0,1} };
			auto res = Solution().checkIfPrerequisite(numCourses, prerequisites, queries);
			AssertEx(vector<bool>{false, false}, res);
		}
		TEST_METHOD(TestMethod13)
		{
			numCourses = 3, prerequisites = { {1,2},{1,0},{2,0} }, queries = { {1,0},{1,2} };
			auto res = Solution().checkIfPrerequisite(numCourses, prerequisites, queries);
			AssertEx(vector<bool>{true, true}, res);
		}
		TEST_METHOD(TestMethod14)
		{
			numCourses = 5, prerequisites = { {4,3},{4,1},{4,0},{3,2},{3,1},{3,0},{2,1},{2,0},{1,0} },
				queries = { {1,4},{4,2},{0,1},{4,0},{0,2},{1,3},{0,1} };
			auto res = Solution().checkIfPrerequisite(numCourses, prerequisites, queries);
			AssertEx(vector<bool>{false, true, false, true, false, false, false}, res);
		}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闻缺陷则喜何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值