【树上倍增 LCA DFS 前缀和】P10391 [蓝桥杯 2024 省 A] 零食采购|普及+

本文涉及知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
C++DFS
树上倍增 LCA

P10391 [蓝桥杯 2024 省 A] 零食采购

题目描述

小蓝准备去星际旅行,出发前想在本星系采购一些零食,星系内有 n n n 颗星球,由 n − 1 n-1 n1 条航路连接为连通图,第 i i i 颗星球卖第 c i c_i ci 种零食特产。小蓝想出了 q q q 个采购方案,第 i i i 个方案的起点为星球 s i s_i si ,终点为星球 t i t_i ti ,对于每种采购方案,小蓝将从起点走最短的航路到终点,并且可以购买所有经过的星球上的零食(包括起点终点),请计算每种采购方案最多能买多少种不同的零食。

输入格式

输入的第一行包含两个正整数 n n n q q q,用一个空格分隔。
第二行包含 n n n 个整数 c 1 , c 2 , ⋯   , c n c_1,c_2,\cdots, c_n c1,c2,,cn,相邻整数之间使用一个空格分隔。
接下来 n − 1 n - 1 n1 行,第 i i i 行包含两个整数 u i , v i u_i,v_i ui,vi,用一个空格分隔,表示一条
航路将星球 u i u_i ui v i v_i vi 相连。
接下来 q q q 行,第 i i i 行包含两个整数 $s_i
, t_i $,用一个空格分隔,表示一个采购方案。

输出格式

输出 q q q 行,每行包含一个整数,依次表示每个采购方案的答案。

输入输出样例 #1

输入 #1

4 2
1 2 3 1
1 2
1 3
2 4
4 3
1 4

输出 #1

3
2

说明/提示

第一个方案路线为 { 4 , 2 , 1 , 3 } \{4, 2, 1, 3\} {4,2,1,3},可以买到第 1 , 2 , 3 1, 2, 3 1,2,3 种零食;
第二个方案路线为 { 1 , 2 , 4 } \{1, 2, 4\} {1,2,4},可以买到第 1 , 2 1, 2 1,2 种零食。

对于 20% 的评测用例,$1 ≤ n, q ≤ 5000 $;
对于所有评测用例, 1 ≤ n , q ≤ 1 0 5 , 1 ≤ c i ≤ 20 , 1 ≤ u i , v i ≤ n , 1 ≤ s i , t i ≤ n 1 ≤ n, q ≤ 10^5,1 ≤ c_i ≤ 20,1 ≤ u_i , v_i ≤ n,1 ≤ s_i , t_i ≤ n 1n,q1051ci201ui,vin1si,tin

DFS 树上前缀和 LCA

以1(0)为根,cnt[i][j]记录第j个星球是否有货物i。preSum[i][j],节点j到根节点整个路径包括货物i的星球数量。初始化只需要一次DFS。时间复杂度:O(20n)
每次查询,令u和v的最近公共祖先g,如果preSum[i][u]+preSum[i][v]-2preSum[i][g]+cnt[i][g] > 0,则可以买到货物i。
是否复杂度:O(20qlogn)

代码

核心代码

#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include<array>

#include <bitset>
using namespace std;

template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
	in >> pr.first >> pr.second;
	return in;
}

template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t);
	return in;
}

template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
	return in;
}

template<class T1, class T2, class T3, class T4, class T5, class T6, class T7 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4,T5,T6,T7>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t) >> get<4>(t) >> get<5>(t) >> get<6>(t);
	return in;
}

template<class T = int>
vector<T> Read() {
	int n;
	cin >> n;
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}
template<class T = int>
vector<T> ReadNotNum() {
	vector<T> ret;
	T tmp;
	while (cin >> tmp) {
		ret.emplace_back(tmp);
		if ('\n' == cin.get()) { break; }
	}
	return ret;
}

template<class T = int>
vector<T> Read(int n) {
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}

template<int N = 1'000'000>
class COutBuff
{
public:
	COutBuff() {
		m_p = puffer;
	}
	template<class T>
	void write(T x) {
		int num[28], sp = 0;
		if (x < 0)
			*m_p++ = '-', x = -x;

		if (!x)
			*m_p++ = 48;

		while (x)
			num[++sp] = x % 10, x /= 10;

		while (sp)
			*m_p++ = num[sp--] + 48;
		AuotToFile();
	}
	void writestr(const char* sz) {
		strcpy(m_p, sz);
		m_p += strlen(sz);
		AuotToFile();
	}
	inline void write(char ch)
	{
		*m_p++ = ch;
		AuotToFile();
	}
	inline void ToFile() {
		fwrite(puffer, 1, m_p - puffer, stdout);
		m_p = puffer;
	}
	~COutBuff() {
		ToFile();
	}
private:
	inline void AuotToFile() {
		if (m_p - puffer > N - 100) {
			ToFile();
		}
	}
	char  puffer[N], * m_p;
};

template<int N = 1'000'000>
class CInBuff
{
public:
	inline CInBuff() {}
	inline CInBuff<N>& operator>>(char& ch) {
		FileToBuf();
		while (('\r' == *S) || ('\n' == *S) || (' ' == *S)) { S++; }//忽略空格和回车
		ch = *S++;
		return *this;
	}
	inline CInBuff<N>& operator>>(int& val) {
		FileToBuf();
		int x(0), f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行		
		return *this;
	}
	inline CInBuff& operator>>(long long& val) {
		FileToBuf();
		long long x(0); int f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行
		return *this;
	}
	template<class T1, class T2>
	inline CInBuff& operator>>(pair<T1, T2>& val) {
		*this >> val.first >> val.second;
		return *this;
	}
	template<class T1, class T2, class T3>
	inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
		return *this;
	}
	template<class T1, class T2, class T3, class T4>
	inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
		return *this;
	}
	template<class T = int>
	inline CInBuff& operator>>(vector<T>& val) {
		int n;
		*this >> n;
		val.resize(n);
		for (int i = 0; i < n; i++) {
			*this >> val[i];
		}
		return *this;
	}
	template<class T = int>
	vector<T> Read(int n) {
		vector<T> ret(n);
		for (int i = 0; i < n; i++) {
			*this >> ret[i];
		}
		return ret;
	}
	template<class T = int>
	vector<T> Read() {
		vector<T> ret;
		*this >> ret;
		return ret;
	}
private:
	inline void FileToBuf() {
		const int canRead = m_iWritePos - (S - buffer);
		if (canRead >= 100) { return; }
		if (m_bFinish) { return; }
		for (int i = 0; i < canRead; i++)
		{
			buffer[i] = S[i];//memcpy出错			
		}
		m_iWritePos = canRead;
		buffer[m_iWritePos] = 0;
		S = buffer;
		int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
		if (readCnt <= 0) { m_bFinish = true; return; }
		m_iWritePos += readCnt;
		buffer[m_iWritePos] = 0;
		S = buffer;
	}
	int m_iWritePos = 0; bool m_bFinish = false;
	char buffer[N + 10], * S = buffer;
};

class CNeiBo
{
public:
	static vector<vector<int>> Two(int n, const vector<pair<int, int>>& edges, bool bDirect, int iBase = 0)
	{
		vector<vector<int>>  vNeiBo(n);
		for (const auto& [i1, i2] : edges)
		{
			vNeiBo[i1 - iBase].emplace_back(i2 - iBase);
			if (!bDirect)
			{
				vNeiBo[i2 - iBase].emplace_back(i1 - iBase);
			}
		}
		return vNeiBo;
	}
	static vector<vector<int>> Two(int n, const vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		vector<vector<int>>  vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
		return vNeiBo;
	}
	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		vector<vector<std::pair<int, int>>> vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
			}
		}
		return vNeiBo;
	}
	static vector<vector<std::pair<int, int>>> Three(int n, const vector<tuple<int, int, int>>& edges, bool bDirect, int iBase = 0)
	{
		vector<vector<std::pair<int, int>>> vNeiBo(n);
		for (const auto& [u, v, w] : edges)
		{
			vNeiBo[u - iBase].emplace_back(v - iBase, w);
			if (!bDirect)
			{
				vNeiBo[v - iBase].emplace_back(u - iBase, w);
			}
		}
		return vNeiBo;
	}
	static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
	{
		vector<vector<int>> neiBo(neiBoMat.size());
		for (int i = 0; i < neiBoMat.size(); i++)
		{
			for (int j = i + 1; j < neiBoMat.size(); j++)
			{
				if (neiBoMat[i][j])
				{
					neiBo[i].emplace_back(j);
					neiBo[j].emplace_back(i);
				}
			}
		}
		return neiBo;
	}
};

class CBFSLeve {
public:
	static vector<int> Leve(const vector<vector<int>>& neiBo, vector<int> start) {
		vector<int> leves(neiBo.size(), -1);
		for (const auto& s : start) {
			leves[s] = 0;
		}
		for (int i = 0; i < start.size(); i++) {
			for (const auto& next : neiBo[start[i]]) {
				if (-1 != leves[next]) { continue; }
				leves[next] = leves[start[i]] + 1;
				start.emplace_back(next);
			}
		}
		return leves;
	}
	template<class NextFun>
	static vector<int> Leve(int N, NextFun nextFun, vector<int> start) {
		vector<int> leves(N, -1);
		for (const auto& s : start) {
			leves[s] = 0;
		}
		for (int i = 0; i < start.size(); i++) {
			auto nexts = nextFun(start[i]);
			for (const auto& next : nexts) {
				if (-1 != leves[next]) { continue; }
				leves[next] = leves[start[i]] + 1;
				start.emplace_back(next);
			}
		}
		return leves;
	}
	static vector<vector<int>> LeveNodes(const vector<int>& leves) {
		const int iMaxLeve = *max_element(leves.begin(), leves.end());
		vector<vector<int>> ret(iMaxLeve + 1);
		for (int i = 0; i < leves.size(); i++) {
			ret[leves[i]].emplace_back(i);
		}
		return ret;
	};
	static vector<int> LeveSort(const vector<int>& leves) {
		const int iMaxLeve = *max_element(leves.begin(), leves.end());
		vector<vector<int>> leveNodes(iMaxLeve + 1);
		for (int i = 0; i < leves.size(); i++) {
			leveNodes[leves[i]].emplace_back(i);
		}
		vector<int> ret;
		for (const auto& v : leveNodes) {
			ret.insert(ret.end(), v.begin(), v.end());
		}
		return ret;
	};
};
class CParents
{
public:
	CParents(vector<int>& vParent, long long iMaxDepth)
	{
		int iBitNum = 0;
		for (; iMaxDepth; iBitNum++) {
			const auto mask = 1LL << iBitNum;
			if (mask & iMaxDepth) { iMaxDepth = iMaxDepth ^ mask; }
		}
		const int n = vParent.size();
		m_vParents.assign(iBitNum + 1, vector<int>(n, -1));
		m_vParents[0] = vParent;
		//树上倍增
		for (int i = 1; i < m_vParents.size(); i++)
		{
			for (int j = 0; j < n; j++)
			{
				const int iPre = m_vParents[i - 1][j];
				if (-1 != iPre)
				{
					m_vParents[i][j] = m_vParents[i - 1][iPre];
				}
			}
		}
	}
	int GetParent(int iNode, int iDepth)const
	{
		int iParent = iNode;
		for (int iBit = 0; iBit < m_vParents.size(); iBit++)
		{
			if (-1 == iParent)
			{
				return iParent;
			}
			if (iDepth & (1 << iBit))
			{
				iParent = m_vParents[iBit][iParent];
			}
		}
		return iParent;
	}
	inline int GetBitCnt()const { return m_vParents.size(); };
	inline const int& GetPow2Parent(int iNode, int n)const {
		return m_vParents[n][iNode];
	}
	//在leftNodeExclude的1到rightLeve级祖先中查找符合pr的最近祖先
	template<class _Pr>
	int FindFirst(int leftNodeExclude, int rightLeve, _Pr pr) {
		for (int iBit = GetBitCnt() - 1; iBit >= 0; iBit--) {
			const int iMask = 1 << iBit;
			if (!(iMask & rightLeve)) { continue; }
			if (pr(m_vParents[iBit][leftNodeExclude])) {
				return BFindFirst(leftNodeExclude, iBit, pr);
			}
			leftNodeExclude = m_vParents[iBit][leftNodeExclude];
		}
		return -1;
	}
	//在node的0到rightLeve级祖先中查找符合pr的最远祖先比node高多少层次,这些层次必须存在
	template<class _Pr>
	int FindEnd(int node, int rightLeve, _Pr pr) {
		int leve = 0;
		for (int iBit = GetBitCnt() - 1; iBit >= 0; iBit--) {
			const int iMask = 1 << iBit;
			if (!(iMask & rightLeve)) { continue; }
			if (!pr(m_vParents[iBit][node])) {
				return leve + BFindEnd(node, iBit, pr);
			}
			node = m_vParents[iBit][node];
			leve = leve ^ iMask;
		}
		return leve;
	}
protected:
	//在leftNodeExclude的1到2^pow^级祖先中查找符合pr的最近祖先
	template<class _Pr>
	int BFindFirst(int leftNodeExclude, int pow, _Pr pr) {
		while (pow > 0) {
			const int& mid = m_vParents[pow - 1][leftNodeExclude];
			if (pr(mid)) {
			}
			else {
				leftNodeExclude = mid;
			}
			pow--;
		}
		return m_vParents[0][leftNodeExclude];
	}
	//在node的[0,2^pow^-1]级祖先中寻找符合的最后一个
	template<class _Pr>
	int BFindEnd(int node, int pow, _Pr pr) {
		int leve = 0;
		while (pow > 0) {
			pow--;
			const int& mid = m_vParents[pow][node];
			if (pr(mid)) {
				node = mid;
				leve = leve ^ (1 << pow);
			}
			else {

			}

		}
		return leve;
	}
	vector<vector<int>> m_vParents;
};

class C2Parents : public CParents
{
public:
	C2Parents(vector<int>& vParent, const vector<int>& vDepth) :m_vDepth(vDepth)
		, CParents(vParent, *std::max_element(vDepth.begin(), vDepth.end()))
	{
	}
	int GetPublicParent(int iNode1, int iNode2)const
	{
		int leve0 = m_vDepth[iNode1];
		int leve1 = m_vDepth[iNode2];
		if (leve0 < leve1)
		{
			iNode2 = GetParent(iNode2, leve1 - leve0);
			leve1 = leve0;
		}
		else
		{
			iNode1 = GetParent(iNode1, leve0 - leve1);
			leve0 = leve1;
		}
		if (iNode1 == iNode2) { return iNode1; }
		for (int iBit = GetBitCnt() - 1; iBit >= 0; iBit--) {
			const int iMask = 1 << iBit;
			if (iMask & leve0) {
				const int i1 = GetPow2Parent(iNode1, iBit);
				const int i2 = GetPow2Parent(iNode2, iBit);
				if (i1 == i2) {
					while (iBit > 0) {
						const int i3 = GetPow2Parent(iNode1, iBit - 1);
						const int i4 = GetPow2Parent(iNode2, iBit - 1);
						if (i3 != i4) {
							iNode1 = i3; iNode2 = i4;
						}
						iBit--;
					}
					return GetPow2Parent(iNode1, 0);
				}
				else {
					iNode1 = i1; iNode2 = i2; leve0 -= iMask;
				}
			}
		}
		return iNode1;
	}
protected:

	vector<vector<int>> m_vParents;
	const vector<int> m_vDepth;
};
class Solution {
public:
	vector<int> Ans(const int N, vector<int>& c, vector<pair<int, int>>& edge, vector<pair<int, int>>& que) {
		auto neiBo = CNeiBo::Two(N, edge, false, 1);
		vector<vector<int>> cnt(20, vector<int>(N)), preSum(20, vector<int>(N));
		vector<int> vpar(N, -1);
		function<void(int, int)> DFS = [&](int cur, int par) {
			vpar[cur] = par;
			for (int i = 0; i < 20; i++)
			{
				cnt[i][cur] = (i == c[cur] - 1);
				preSum[i][cur] = cnt[i][cur];
				if (-1 != par) {
					preSum[i][cur] += preSum[i][par];
				}
			}
			for (const auto& next : neiBo[cur]) {
				if (next == par) { continue; }
				DFS(next, cur);
			}
		};
		DFS(0, -1);
		auto leves = CBFSLeve::Leve(neiBo, { 0 });
		C2Parents p2(vpar, leves);
		vector<int> ans;
		for (auto [u, v] : que) {
			u--, v--;
			const int g = p2.GetPublicParent(u, v);
			int cur = 0;
			for (int i = 0; i < 20; i++) {
				cur += (preSum[i][u] + preSum[i][v] - 2 * preSum[i][g] + cnt[i][g] > 0);
			}
			ans.emplace_back(cur);
		}
		return ans;
	}
};

int main() {
#ifdef _DEBUG
	freopen("a.in", "r", stdin);
#endif // DEBUG	
	ios::sync_with_stdio(0); cin.tie(nullptr);
	//CInBuff<> in; COutBuff<10'000'000> ob;
	int N, Q;
	cin >> N >> Q;
	auto c = Read<int>(N);
	auto edge = Read<pair<int, int>>(N - 1);
	auto que = Read<pair<int, int>>(Q);
#ifdef _DEBUG	
		printf("N=%d", N);
		Out(c, ",c=");
		Out(que, ",que=");
		Out(edge, ",edge=");
		//Out(edge2, ",edge2=");
		//Out(rr, ",rr=");
	   //Out(ab, ",ab=");
	   //Out(par, "par=");
	   //Out(que, "que=");
	   //Out(B, "B=");
#endif // DEBUG	
		Solution slu;
		auto res = slu.Ans(N,c,edge,que);
		for (const auto& i : res)
		{
			cout << i << "\n";
		}
	return 0;
};

单元测试

int N;
		vector<int> c;
		vector<pair<int, int>> edge, que;
		TEST_METHOD(TestMethod01)
		{
			N = 4, c = { 1,2,3,1 }, que = { {4,3},{1,4} }, edge = { {1,2},{1,3},{2,4} };
			auto res = Solution().Ans(N, c, edge, que);
			AssertEx({ 3,2 }, res);
		}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件架构师何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值