唐宇迪深度学习笔记

本文详细介绍了唐宇迪的深度学习笔记,涵盖了多层感知机(MLP)、卷积神经网络、循环神经网络、自编码器和生成对抗网络的基本概念和应用场景。还讨论了大数据行业的发展驱动力、机器学习中的K-means聚类、图像表示、K近邻算法以及损失函数。此外,文章提到了神经网络训练模型和Drop-out技术在防止过拟合中的作用。
摘要由CSDN通过智能技术生成

【b站视频—唐宇迪深度学习网址】
https://www.bilibili.com/video/BV1CE411Q7dn?from=search&seid=4714546485764005493

多层感知机(MLP)
  • 多个神经元以全连接层次相连
  • 被称为前馈神经网络
  • 万能逼近原理:非线性函数的有限次复合能逼近任何函数。
  • MLP的困境:
  1. 目标函数通常为非凸函数;
  2. 极容易陷入局部最优值;
  3. 网络层数增加后,存在梯度消失或梯度爆炸问题。
典型网络结构
  • 卷积神经网络
  1. 适合处理网格型数据:如物体识别、图片分类;
  2. 全连接网络并不适用于图像,会出现参数爆炸的问题;
  3. 卷积操作:稀疏链接、参数共享、等边表示;
  • 循环神经网络
  1. 适合处理自然语言:如机器翻译、词性标注、词向量、语音识别、图像描述生成;
  2. 变体有LSTM、GRU;
  • 自编码器
  1. 无监督特征学习;
  2. 输出尽量逼近输入;
  3. 隐层节点通常比输入小;
  4. 非线性:表达能力比PCA更好;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值