【b站视频—唐宇迪深度学习网址】
https://www.bilibili.com/video/BV1CE411Q7dn?from=search&seid=4714546485764005493
多层感知机(MLP)
- 多个神经元以全连接层次相连
- 被称为前馈神经网络
- 万能逼近原理:非线性函数的有限次复合能逼近任何函数。
- MLP的困境:
- 目标函数通常为非凸函数;
- 极容易陷入局部最优值;
- 网络层数增加后,存在梯度消失或梯度爆炸问题。
典型网络结构
- 卷积神经网络
- 适合处理网格型数据:如物体识别、图片分类;
- 全连接网络并不适用于图像,会出现参数爆炸的问题;
- 卷积操作:稀疏链接、参数共享、等边表示;
- 循环神经网络
- 适合处理自然语言:如机器翻译、词性标注、词向量、语音识别、图像描述生成;
- 变体有LSTM、GRU;
- 自编码器
- 无监督特征学习;
- 输出尽量逼近输入;
- 隐层节点通常比输入小;
- 非线性:表达能力比PCA更好;