Majing-2017ACL-Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning

本文介绍了一种基于内核的传播树方法,用于识别社交媒体上的谣言。该方法通过评估传播树之间的相似性,捕捉传播过程中的上下文信息,实现对谣言的精确分类。实验在Twitter数据集上进行,结果显示该方法能有效区分假谣言、真谣言、未经证实的谣言和非谣言。
摘要由CSDN通过智能技术生成

主要内容

  • 提出基于内核的传播树方法,通过评估传播树之间的相似性来识别谣言
  • 基本思想是寻找和捕捉Ru-MORS的传播树中的显著子结构。将PTK(传播树核)扩展为上下文丰富的PTK(CPTK),通过考虑从源Tweet到子树根的不同传播路径来增强模型,从而捕获传输的上下文。
  • 分类粒度更细:假谣言、真谣言、未经正式的谣言、非谣言(数据集的分类更多,每个集合中的数据更少)。

具体模型

实验设置

  • twitter15
    在这里插入图片描述
  • twitter16
    在这里插入图片描述
    在这里插入图片描述
  • 对两个原始数据集中的数据进行了筛选:只提取了热门的推文,这些推文都是被转发或回复的(数据集相比于原来更小了)

实验结果

在这里插入图片描述

缺陷

不能直接对一棵树进行分类,需要与其他树进行成对比较。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值