无穷分析引论
文章平均质量分 88
HEATSNOW_
不喜不悲
展开
-
(四)函数变换——无理函数有理化
变量代换形式的函数变换主要是引入新变量用参数方程的形式将无理函数有理化以及隐函数显式化.无理函数有理化主要指将函1. 形如y=a+bxy=\sqrt{a+bx}y=a+bx的函数引入新变量ttt,令y=bty=bty=bt,有a+bx=bt\sqrt{a+bx}=bta+bx=bt即a+bx=b2t2a+bx=b^2t^2a+bx=b2t2从而x=bt2−abx=bt^2-\frac{a}{b}x=bt2−ba所以有{x=bt2−aby=bt\left\{\begin{matrix}x=bt原创 2021-01-12 18:38:09 · 5381 阅读 · 1 评论 -
(三)函数变换——分数函数的分解
分数函数真分数函数:分母的最高次数大于分子的最高次数假分数函数:分母的最高次数小于分子的最高次数对于假分数函数,可以分解为整函数与真分数函数的和,例如1+x41+x2=x2−1+21+x2\frac{1+x^4}{1+x^2}=x^2-1+\frac{2}{1+x^2}1+x21+x4=x2−1+1+x22通常对于假分数函数只要做多项式的长除法即可将整函数分解出来.真分数函数的分解1. 分母是两个互质因式乘积的分数函数,可以分解为以这两个因式为分母的分数函数的和.考虑分数函数1−2x+3x原创 2021-01-10 16:49:59 · 2397 阅读 · 0 评论 -
(二)函数变换——整函数分解因式
1.函数变换形式表达式改写,例如原表达式2−3x+x2,2a2a2−x22-3x+x^2,\frac{2a^2}{a^2-x^2}2−3x+x2,a2−x22a2可以分别改写为(1−x)(1+x),aa−x+aa+x(1-x)(1+x),\frac{a}{a-x}+\frac{a}{a+x}(1−x)(1+x),a−xa+a+xa变量代换,也称作换元,例如用y=a2−x22x2y=\frac{a^2-x^2}{2x^2}y=2x2a2−x2,可以将无理函数a2+x2\sqrt{a^2+x原创 2021-01-08 16:32:42 · 659 阅读 · 0 评论 -
(一)函数
1.常量和变量常量是取定的一个数值,取定后常量的值保持不变,一般使用拉丁字母表的开始部分,比如a,b,ca,b,ca,b,c变量是不确定的,可以取每一个数,一般用拉丁字母表的解为部分,比如x,y,zx,y,zx,y,z指定变量为某个确定的值,变量就变成了常量2.函数变量的函数是变量、常量和数用某种方式联合在一起的解析表达式,比如zzz的函数就是只含有一个变量zzz,其余皆是常量和数构成,比如az+ba2−z2az+b\sqrt{a^2-z^2}az+ba2−z2, 函数之间的区别主要又变原创 2021-01-07 19:28:38 · 349 阅读 · 0 评论