肝脏分割 multiphase contrast-enhanced CT images based on FCNs liver segmentation

本文提出了一种全自动的肝脏肿瘤分割方法,利用多通道完全卷积网络(MC-FCN)从多相对比增强CT图像中进行分割。通过对不同相位的CT图像分别训练网络并融合高层特征,提高了分割的准确性和鲁棒性。在3Dircadb和JDRD数据库上的测试结果显示,MC-FCN模型相比以往方法表现更优。
摘要由CSDN通过智能技术生成

This paper presents a novel, fully automatic approach based on a fully convolutional network (FCN) for segmenting liver tumors from CT images. Specifically, we designed a multi-channel fully convolutional network (MC-FCN) to segment liver tumors from multiphase contrast-enhanced CT images. Because each
phase of contrast-enhanced data provides distinct information on pathological features, we trained one network for each phase of the CT images and fused their high-layer features together. The proposed approach was validated on CT images taken from two databases: 3Dircadb and JDRD. In the case of 3Dircadb, using the FCN, the mean ratios of the volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root mean square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSSD) were 15.6 ± 4.3%, 5.8 ± 3.5%, 2.0 ± 0.9%, 2.9 ± 1.5 mm,
7.1 ± 6.2 mm, respectively. For JDRD, using the MC-FCN, the mean ratios of VOE, RVD, ASD, RMSD, and MSSD were 8.1 ± 4.5%, 1.7 ± 1.0%, 1.5 ± 0.7%, 2.0 ± 1.2 mm, 5.2 ± 6.4 mm, respectively. The test results demonstrate that the MC-FCN model provides greater accuracy and robustness than previous methods.

本文提出了一种基于完全卷积网络(FCN)的新型全自动方法,用于从CT图像中分割肝脏肿瘤。具体来说,我们设计了一个多通道完全卷积网络(MC-FCN)来分割来自多相增强CT图像的肝肿瘤。因为每个

对比增强数据的相位提供了关于病理特征的独特信息,我们为CT图像的每个阶段训练了一个网络并将它们的高层特征融合在一起。所提出的方法在从两个数据库获取的CT图像上验证:3Dircadb和JDRD。在3Dircadb的情况下,使用FCN,体积重叠误差(VOE),相对体积差(RVD),平均对称表面距离(ASD),均方根对称表面距离(RMSD)和最大对称表面距离距离(MSSD)分别为15.6±4.3%,5.8±3.5%,2.0±0.9%,2.9±1.5mm,

7.1±6.2毫米,分别。对于JDRD,使用MC-FCN,VOE,RVD,ASD,RMSD和MSSD的平均比率分别为8.1±4.5%,1.7±1.0%,1.5±0.7%,2.0±1.2mm,5.2±6.4mm 测试结果表明MC-FCN模型比以前的方法提供更高的准确性和鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值