Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT
Radiology, Vol.311, No.2, 2024, Original Research, Genitourinary Imaging
复旦大学中山医院
背景Background:准确识别可疑肾脏小肿块对优化管理至关重要。深度学习算法可以帮助实现这一目标。
目的Purpose:为了开发和验证深度学习算法在对比增强多阶段CT数据上识别良性肾脏小肿块
结果Results:验证一共1703个病人(平均年龄,56岁12[SD][标准差]);619女性)有每个病人有单个肾脏小肿块。回溯性数据集包括了1063个病变(874个训练集,189个外部测试集);多中心外部测试集包括了537个病变(12.3%,66个良性)有着89个亚厘米(≤1cm)病变(16.6%);回溯性测试集包括了103个病变(13.6%,14个良性)这其中有20个(19.4%)亚厘米病变。深度学习算法的性能与泌尿外科影像科医生相比较:对于外部测试集,AUC是0.80(95%CI置信区间:0.75,0.85)对比0.84(95%CI置信区间:0.78,0.88)(P=.61);对于回溯性测试集,深度学习算法和泌尿外科医生有着相似的AUC,为0.74(95%置信区间:0.63,0.83&#x