文献日更:Deep Learning Assessment of Small Renal Massess at Contrast-enhanced Multiphase CT

研究开发并验证了一种深度学习算法,用于对比增强多期相CT图像中识别良性小肾肿块,表现与专业医生相当。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

Radiology, Vol.311, No.2, 2024, Original Research, Genitourinary Imaging

复旦大学中山医院

背景Background:准确识别可疑肾脏小肿块对优化管理至关重要。深度学习算法可以帮助实现这一目标。

目的Purpose:为了开发和验证深度学习算法在对比增强多阶段CT数据上识别良性肾脏小肿块

结果Results:验证一共1703个病人(平均年龄,56岁\pm12[SD][标准差]);619女性)有每个病人有单个肾脏小肿块。回溯性数据集包括了1063个病变(874个训练集,189个外部测试集);多中心外部测试集包括了537个病变(12.3%,66个良性)有着89个亚厘米(≤1cm)病变(16.6%);回溯性测试集包括了103个病变(13.6%,14个良性)这其中有20个(19.4%)亚厘米病变。深度学习算法的性能与泌尿外科影像科医生相比较:对于外部测试集,AUC是0.80(95%CI置信区间:0.75,0.85)对比0.84(95%CI置信区间:0.78,0.88)(P=.61);对于回溯性测试集,深度学习算法和泌尿外科医生有着相似的AUC,为0.74(95%置信区间:0.63,0.83&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值