常用建模方法

数据建模

世界上物品种类有千万种,各种信息更是层出不穷,每种信息都有各自独特的格式和表达方式,如何对信息进行描述,按照一定的方式进行转化,使之形成适合存储的数据格式,称之为建模。常用的有实体建模法,维度建模法,范式建模法三种数据建模方法,不管哪种数据建模方法都是使信息结构清晰、易于存储和读取。

(1)实体建模法

 实体是现实世界中存在的事物或发生的事件,是现实世界中任何可识别、可区分的事物。实体可以是人,可以是物,也可以是发生的某件事,比如一场篮球比赛。每一个实体都必须具备一定的特征,用来区分一个个实体,这些特征称为属性,每个实体可以用若干个属性来刻画,每个属性又有一定的取值类型和取值范围,属性是变量,其取值范围是属性的值域。实体建模法是根据客观世界中的一个个实体,以及实体之间的关系,在数据建模的过程中引入这种区分方法,将整个业务分成一个个实体,从而建立数据模型。实体建模可以比较容易的实现模型的划分,抽象出具体的业务概念,创建符合自己需要的数据库模型。实体建模是对客观世界的抽象,因此该方法建立的模型具有一定的局限性,适合于特定的领域。

(2)维度建模法

维度在数学上指独立参数的数据,在数据分析领域,是指描述事物的角度和方面,是数据库当中,描述某一事物的方法和属性的数目。维度建模就是针对给定的事物,使用不同的描述方法,记录该事物在不同分类方法当中每个属性的值。如对人进行维度建模时,按照性别的维度可以分为男和女,按照年龄段可以分为儿童、少年、青年、中年、老年,按照收入水平可以分为3000以下、3000-6000、6000-10000,10000以上等集中类别。

 维度建模法的好处是对于某个事物,可以在各个维度进行预处理,进行统计、分类、排序等,提高数据库操作性能,同时维度建模法建立的数据模型比较直观,可以紧密围绕业务需求建立模型,直观的反应业务中的问题,建模方法简单,不需要进行特别的抽象处理。但是维度建模法同时也存在缺点,一是在数据建模时需要进行预处理,存在大量的预处理工作,并且当业务需求发生变化时,需要重新定义维度,重新进行新维度的数据预处理,在数据预处理过程中往往存在大量数据冗余,另外就是在进行维度建模时,仅仅依靠维度进行建模,不能保证数据来源的准确性和一致性,不适合在数据库底层使用。

(3)范式建模法

范式就是规则,是符合某一级别关系模式的集合,构造数据库时必须遵循一定的规则。关系数据库中的关系必须满足一定的规则,即满足不同的范式。

 范式建模法是将原始数据信息根据一定的数据结构和转换模型,分解、转化为规范的格式,使数据遵守一定的约束条件,每一个数据项所表达的意思明确,不产生歧义,同时各条数据之间相互独立,不存在依赖关系。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值