leetcode115 不同的子序列

给定一个字符串 S 和一个字符串 T,计算在 S 的子序列中 T 出现的个数。

一个字符串的一个子序列是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)

示例 1:

输入: S = "rabbbit", T = "rabbit"
输出: 3
解释:

如下图所示, 有 3 种可以从 S 中得到 "rabbit" 的方案。
(上箭头符号 ^ 表示选取的字母)

rabbbit
^^^^ ^^
rabbbit
^^ ^^^^
rabbbit
^^^ ^^^
示例 2:

输入: S = "babgbag", T = "bag"
输出: 5
解释:

如下图所示, 有 5 种可以从 S 中得到 "bag" 的方案。 
(上箭头符号 ^ 表示选取的字母)

babgbag
^^ ^
babgbag
^^    ^
babgbag
^    ^^
babgbag
  ^  ^^
babgbag
    ^^^

思路:

动态规划

dp[i][j] 代表 T 前 i 字符串可以由 S j 字符串组成最多个数.

所以动态方程:

当 S[j] == T[i] , dp[i][j] = dp[i-1][j-1] + dp[i][j-1];

当 S[j] != T[i] , dp[i][j] = dp[i][j-1]

class Solution {
    public int numDistinct(String s, String t) {
        int[][] dp = new int[t.length() + 1][s.length() + 1];
        for (int j = 0; j < s.length() + 1; j++) dp[0][j] = 1;
        for (int i = 1; i < t.length() + 1; i++) {
            for (int j = 1; j < s.length() + 1; j++) {
                if (t.charAt(i - 1) == s.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1];
                else dp[i][j] = dp[i][j - 1];
            }
        }
        return dp[t.length()][s.length()];
    }
}

 

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

兔老大RabbitMQ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值