1月27日刷题总结 (rating=1400,1500)

下午比赛题:

T1:937B.Vile Grasshoppers(素数判断)

在这里插入图片描述

题意:给你两个数p,y,求去掉2-y中所有2-p的数的倍数后剩下的最大值,如果没有剩下数输出-1.

分析:从y开始倒序遍历每一个整数i,只要不含有2到p中的因子(不能被2到p中的数整除),就可以作为答案输出

和筛法一个意思,注意最大值可以逆向枚举.只要算到sqrt(10^9)(i<=p这个条件的加入是为了防止x可能不是素数,但是x不含有2~p之间的任何一个因数)

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll p,y;
bool check(ll x){
	if(x<2) return false;
	for(ll i=2;i<=x/i && i<=p;i++){
		if(x%i==0){
			return false;
		}
	}
	return 1;
}
int main(){
	
	cin>>p>>y;
	for(ll i=y;i>p;i--){
		if(check(i)){
			cout<<i<<endl;
			return 0;
		}
	}
	cout<<-1<<endl;
}

T2:930A.Peculiar apple-tree(树的宽度)

在这里插入图片描述

总结:dfs或者bfs统计树的每一层的宽度,是奇数ans+1,是偶数,ans不变

#include<bits/stdc++.h>
using namespace std;
const int N=100005;
vector<int> v[N];
int ceng[200000];
int n;
void dfs(int u,int ii){//dfs统计树的宽度,u表示节点编号,ii表示层数
	ceng[ii]++;
	for(int i=0;i<v[u].size();i++){
		dfs(v[u][i],ii+1);
	}
}
int main(){
	cin>>n;
	for(int i=2;i<=n;i++){
		int tmp;
		cin>>tmp;
		v[tmp].push_back(i);
	}
	int ans=0;
	dfs(1,1);
	for(int i=1;i<=n;i++){
		if(ceng[i]%2==0) ceng[i]=0;
		else ceng[i]=1;
		ans+=ceng[i];
	}
	cout<<ans<<endl;
}

T3:1385D.a-Good String(dfs)

在这里插入图片描述

分析:dfs中做决策,枚举状态

#include<bits/stdc++.h>
using namespace std;
int ff(string str,char ch){//把str全变成ch 
	int cnt=0;
	for(int i=0;i<str.size();i++){
		if(str[i]!=ch) cnt++;
	}
	return cnt;
}
int dfs(string str,char ch){//带返回值的dfs函数,返回对str的最小操作次数 
	if(str.length()==1){
		if(str[0]==ch) return 0;
		return 1;
	}
	int len=str.size();
	string s1=str.substr(0,len/2);
	string s2=str.substr(len/2,len/2);
	int cnt1=ff(s1,ch);//把前半段变成ch
	int cnt2=ff(s2,ch);//把后半段变成ch 
	int q1=dfs(s2,ch+1);//把后半段变成ch+1串 
	int q2=dfs(s1,ch+1);//把前半段变成ch+1串
	return min(q1+cnt1,q2+cnt2); 
}
int main(){
	int t;
	cin>>t;
	string s;
	while(t--){
		int n;
		cin>>n>>s;
		cout<<dfs(s,'a')<<endl;
	}
}

T4:371C.Hamburgers(二分答案)

在这里插入图片描述

分析:二分答案 ,原因是答案具有单调性,比最优解小的值都满足,我们需要找的是断点的最右边(参考算法基础课)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
string s;
ll b,S,c;
ll m;
ll nb,ns,nc,pb,ps,pc;
bool check(ll mid){
	ll sum=0;
	if(mid*b>nb) sum+=pb*(mid*b-nb);//mid*b >nb时,说明当前储量不够,否则的话是不用买的,sum会变成负值!!
	if(mid*S>ns) sum+=ps*(mid*S-ns);
	if(mid*c>nc) sum+=pc*(mid*c-nc);
	return sum<=m;
}

int main(){
	cin>>s;
	cin>>nb>>ns>>nc>>pb>>ps>>pc;
	cin>>m;
	ll l=0,r=1e13;
	for(int i=0;i<s.length();i++){
		if(s[i]=='S') S++;
		else if(s[i]=='B') b++;
		else if(s[i]=='C') c++;
	}
	while(l<r){
		ll mid=(l+r+1)>>1;
		if(check(mid)) l=mid;
		else r=mid-1;
	}
	cout<<l;
}

T5:1278B.A and B(找规律)

在这里插入图片描述

分析:

设detla为两数之差的绝对值,现在问题可以转化为1 2 3 4 5 …中间插入+或者-,枚举操作次数,

例如当操作次数为3时

-1-2-3=-6

1-2-3=-4

…-2 0 2 …4…6

观察上面的规律,1到n的所有符号组合中,会涉及到从最大值依次往下-2,正负都有

我们需要做的就是计算(1+n)*n/2的值是否大于等于detla,然后判断他俩的奇偶性是否相同

Code:

#include<bits/stdc++.h>
using namespace std;
int main(){
	int t;
	cin>>t;
	while(t--){
		int a,b;
		cin>>a>>b;
		int detla=abs(a-b);
		int ans=0;
		for(ans=0;;ans++){
			int Max=ans*(ans+1)/2;
			if(Max>=detla && Max %2 ==detla %2){
				break;
			}
		}
		cout<<ans<<endl;
	}
}

练习题:

T1:1463B.Find The Array(构造)

样例:

input

4
5
1 2 3 4 5
2
4 6
2
1 1000000000
6
3 4 8 1 2 3

output

3 3 3 3 3
3 6
1 1000000000
4 4 8 1 3 3

分析:可以考虑将每一个a[i]变为离它最近的2的整数次幂,如8变为4,10变为9,这样可以保证每个数的变化量都小于等于 a [ i ] / 2 a[i]/2 a[i]/2,故最终总的变化量不会大于 s / 2 s/2 s/2

Code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=55;
ll a[N];
int main(){
	int t;
	cin>>t;
	while(t--){
		int n;
		cin>>n;
		for(int i=1;i<=n;i++) {
			ll x;
			cin>>x;
			ll tmp=(ll)(log(x)/log(2));
			a[i]=(ll)pow(2,tmp);
		}
		for(int i=1;i<=n;i++){
			cout<<a[i]<<" ";
		}
		cout<<"\n";
	}
}

语法知识点复习:

exp(n)值为e^n次方;

另外log函数包括两种函数 一种以e为低的log()函数

另一种为以10为底的log 10()函数;

另外如果自定义以m为底,求log n的值

需要double a=log(n)/log(m);

T2:1461B.Find the Spruce(递推)

题目大意:给定一个n*m大小的网格,从中找出每个点能拓展出的云杉木图案的个数,累加求和

分析:

暴力做会导致超时,所以此题可以观察性质采用递推,设f[i][j]为每个点能拓展出的树木,它的值应该等于下面三个的最小值+1

从下往上走,每当碰到一棵云杉点的时候这个点就是它下面三个点的最小值 +1,如果不是云杉点,那么就要

将这个点的值设为0,因此还需要一个整数数组用来统计。

#include<bits/stdc++.h>
using namespace std;
char g[505][505];
int f[505][505];
int n,m;
int check(int i,int j){
	if(g[i][j]=='.') return 0;
	if(i==n-1 || j==0 || j==m-1) return 1;
	int minn=0x3f3f3f3f;
	for(int k=j-1;k<=j+1;k++){
		minn=min(minn,f[i+1][k]+1);
	}
	return minn;
}
int main(){
	int t;
	cin>>t;
	while(t--){
		memset(f,0,sizeof f);
		
		cin>>n>>m;
		for(int i=0;i<n;i++) cin>>g[i];
		int res=0;
		for(int i=n-1;i>=0;i--){
			for(int j=0;j<m;j++){
				if(g[i][j]=='*'){
					f[i][j]=check(i,j);
					res+=f[i][j];
				}
			}
		}
		cout<<res<<endl;
	}
}
已标记关键词 清除标记
课程简介: 历经半个多月的时间,Debug亲自撸的 “企业员工角色权限管理平台” 终于完成了。正如字面意思,本课程讲解的是一个真正意义上的、企业级的项目实战,主要介绍了企业级应用系统中后端应用权限的管理,其中主要涵盖了六大核心业务模块、十几张数据库表。 其中的核心业务模块主要包括用户模块、部门模块、岗位模块、角色模块、菜单模块和系统志模块;与此同时,Debug还亲自撸了额外的附属模块,包括字典管理模块、商品分类模块以及考勤管理模块等等,主要是为了更好地巩固相应的技术栈以及企业应用系统业务模块的开发流程! 核心技术栈列表: 值得介绍的是,本课程在技术栈层面涵盖了前端和后端的大部分常用技术,包括Spring Boot、Spring MVC、Mybatis、Mybatis-Plus、Shiro(身份认证与资源授权跟会话等等)、Spring AOP、防止XSS攻击、防止SQL注入攻击、过滤器Filter、验证码Kaptcha、热部署插件Devtools、POI、Vue、LayUI、ElementUI、JQuery、HTML、Bootstrap、Freemarker、一键打包部署运行工具Wagon等等,如下图所示: 课程内容与收益: 总的来说,本课程是一门具有很强实践性质的“项目实战”课程,即“企业应用员工角色权限管理平台”,主要介绍了当前企业级应用系统中员工、部门、岗位、角色、权限、菜单以及其他实体模块的管理;其中,还重点讲解了如何基于Shiro的资源授权实现员工-角色-操作权限、员工-角色-数据权限的管理;在课程的最后,还介绍了如何实现一键打包上传部署运行项目等等。如下图所示为本权限管理平台的数据库设计图: 以下为项目整体的运行效果截图: 值得一提的是,在本课程中,Debug也向各位小伙伴介绍了如何在企业级应用系统业务模块的开发中,前端到后端再到数据库,最后再到服务器的上线部署运行等流程,如下图所示:
©️2020 CSDN 皮肤主题: 数字50 设计师:CSDN官方博客 返回首页