JavaScript 二分查找(迭代与递归)

本文详细介绍了二分搜索算法的工作原理,包括其在有序数组中的操作步骤、迭代和递归实现,以及时间复杂度分析。同时探讨了二分搜索的优势和局限性,以及在IT领域的广泛应用,如机器学习、图形学和数据库搜索。
摘要由CSDN通过智能技术生成

        二分搜索被定义为一种在排序数组中使用的搜索算法,通过重复将搜索间隔一分为二。二分查找的思想是利用数组已排序的信息,将时间复杂度降低到O(log N)。

二分查找算法示例 

何时在数据结构中应用二分查找的条件:
应用二分查找算法:
        1、数据结构必须是有序的。
        2、访问数据结构的任何元素都需要恒定的时间。
二分查找算法:
        在这个算法中, 通过查找中间索引“mid”将搜索空间分为两半。 

在二分查找算法中查找中间索引“mid” 

1、将搜索空间的中间元素与键进行比较。 
2、如果在中间元素找到密钥,则过程终止。
3、如果在中间元素没有找到键,则选择哪一半将用作下一个搜索空间。
        3.1、如果键小于中间元素,则使用左侧进行下一步搜索。
        3.2、如果键大于中间元素,则使用右侧进行下一步搜索。
4、这个过程一直持续到找到密钥或者总搜索空间耗尽为止。


二分查找如何工作?
要了解二分搜索的工作原理,请考虑下图:
考虑一个数组arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91},目标 = 23。
第一步:计算mid并将mid元素与key进行比较。如果键小于 mid 元素,则向左移动,如果大于 mid 则将搜索空间向右移动。
        键(即 23)大于当前中间元素(即 16)。搜索空间向右移动。 

二分查找算法:将键与 16 进行比较 

密钥小于当前的中间 56。搜索空间向左移动。   

二分查找算法:将键与 56 进行比较  

第二步:如果key与mid元素的值匹配,则找到该元素并停止搜索。 

二分搜索算法:与 mid 的关键匹配  

如何实现二分查找?
二分查找算法可以通过以下两种方式实现
    1、迭代二分搜索算法
    2、递归二分查找算法
下面给出了这些方法的伪代码。
1.迭代二分查找算法:
这里我们使用 while 循环来继续比较键并将搜索空间分成两半的过程。
迭代二分搜索算法的实现:   

// Program to implement iterative Binary Search
 
// A iterative binary search function. It returns
// location of x in given array arr[l..r] is present,
// otherwise -1
 
 function binarySearch(arr, x)
{    
    let l = 0;
    let r = arr.length - 1;
    let mid;
    while (r >= l) {
         mid = l + Math.floor((r - l) / 2);
  
        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;
  
        // If element is smaller than mid, then
        // it can only be present in left subarray
        if (arr[mid] > x)
            r = mid - 1;
             
        // Else the element can only be present
        // in right subarray
        else
            l = mid + 1;
    }
  
    // We reach here when element is not
    // present in array
    return -1;
}
 
    arr =new Array(2, 3, 4, 10, 40);
    x = 10;
    n = arr.length;
    result = binarySearch(arr, x);
     
(result == -1) ? console.log("Element is not present in array")
               : console.log ("Element is present at index " + result);
                
// This code is contributed by simranarora5sos and rshuklabbb

输出
元素出现在索引 3 处 

时间复杂度: O(log N)
辅助空间: O(1)

2.递归二分查找算法:
        创建一个递归函数并将搜索空间的中间部分与键进行比较。并根据结果返回找到键的索引或调用下一个搜索空间的递归函数。
递归二分查找算法的实现:

// JavaScript program to implement recursive Binary Search
 
// A recursive binary search function. It returns
// location of x in given array arr[l..r] is present,
// otherwise -1
function binarySearch(arr, l, r, x){
    if (r >= l) {
        let mid = l + Math.floor((r - l) / 2);
 
        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;
 
        // If element is smaller than mid, then
        // it can only be present in left subarray
        if (arr[mid] > x)
            return binarySearch(arr, l, mid - 1, x);
 
        // Else the element can only be present
        // in right subarray
        return binarySearch(arr, mid + 1, r, x);
    }
 
    // We reach here when element is not
    // present in array
    return -1;
}
 
let arr = [ 2, 3, 4, 10, 40 ];
let x = 10;
let n = arr.length
let result = binarySearch(arr, 0, n - 1, x);
(result == -1) ? console.log( "Element is not present in array")
               : console.log("Element is present at index " +result);

输出
元素出现在索引 3 处

二分查找的复杂度分析:
时间复杂度: 
        最佳情况:O(1)
        平均情况:O(log N)
        最坏情况:O(log N)
辅助空间:

        O(1),如果考虑递归调用栈则辅助空间为O(logN)。
二分查找的优点:
        二分查找比线性查找更快,特别是对于大型数组。
        比具有类似时间复杂度的其他搜索算法(例如插值搜索或指数搜索)更有效。
        二分搜索非常适合搜索存储在外部存储器(例如硬盘驱动器或云中)中的大型数据集。
二分查找的缺点:
        数组应该是排序的。
        二分查找要求将要查找的数据结构存储在连续的内存位置中。 
        二分查找要求数组的元素是可比较的,这意味着它们必须能够排序。
二分查找的应用:
        二分搜索可以用作机器学习中使用的更复杂算法的构建块,例如训练神经网络或查找模型的最佳超参数的算法。
        它可用于计算机图形学中的搜索,例如光线追踪或纹理映射的算法。
        它可用于搜索数据库。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值