Java 帕斯卡三角形(Pascal’s Triangle)

        帕斯卡三角形是二项式系数的三角形阵列。编写一个函数,以整数值N作为输入,并打印帕斯卡三角形的前N​​行。

例子:

下图显示了 N=6 的帕斯卡三角形 

使用二项式系数的帕斯卡三角形:
        每行的条目数等于行号。例如,第一行有“1 ”,第二行有“ 1 1 ”,第三行有“1 2 1 ”,等等。一行中的每个条目都是二项式系数的值。行号 line 中第 i 个条目的值为C(line, i)。可以使用以下公式计算该值。

C(line, i) = line! / ( (line-i)! * i! )

算法:

    对帕斯卡三角形的每一行(即 1 到N )运行一个循环。
        对于每一行,对该行的每个元素运行内部循环。
            使用方法中提到的公式计算元素的二项式系数。
            
下面是上述方法的实现: 

// Java code for Pascal's Triangle
import java.io.*;
 
class GFG {
     
    // Function to print first
    // n lines of Pascal's Triangle
    static void printPascal(int n)
    {
         
    // Iterate through every line
    // and print entries in it
    for (int line = 0; line < n; line++)
    {
        // Every line has number of 
        // integers equal to line number
        for (int i = 0; i <= line; i++)
        System.out.print(binomialCoeff
                        (line, i)+" ");
                         
        System.out.println();
    }
    }
     
    // Link for details of this function

   //https://blog.csdn.net/hefeng_aspnet/article/details/139959088
    static int binomialCoeff(int n, int k)
    {
        int res = 1;
         
        if (k > n - k)
        k = n - k;
             
        for (int i = 0; i < k; ++i)
        {
            res *= (n - i);
            res /= (i + 1);
        }
        return res;
    }
     
    // Driver code
    public static void main(String args[])
    {
    int n = 7;
    printPascal(n);
    }
}
 
/*This code is contributed by Nikita Tiwari.*/  

输出:


 1 1 
 1 2 1 
 1 3 3 1 
 1 4 6 4 1 
 1 5 10 10 5 1 
 1 6 15 20 15 6 1

时间复杂度: O(N^3),其中 N 是要打印的行数
辅助空间: O(1)

使用动态规划的帕斯卡三角形:
        如果我们仔细观察三角形,我们会发现每个条目都是其上方两个值的总和。因此,使用动态规划,我们可以创建一个二维数组来存储先前生成的值。为了在一行中生成一个值,我们可以使用数组中先前存储的值。 

案例:

if line == 0 or line == i
        arr[line][i] =1
else:
        arr[line][i] = arr[line-1][i-1] + arr[line-1][i]

下面是上述方法的实现: 

// java program for Pascal's Triangle
// A O(n^2) time and O(n^2) extra 
// space method for Pascal's Triangle
import java.io.*;
 
class GFG {
    public static void main (String[] args) {
        int n = 5;
        printPascal(n);
    }
 
public static void printPascal(int n)
{
// An auxiliary array to store generated pascal triangle values
int[][] arr = new int[n][n]; 
 
// Iterate through every line and print integer(s) in it
for (int line = 0; line < n; line++)
{
    // Every line has number of integers equal to line number
    for (int i = 0; i <= line; i++)
    {
    // First and last values in every row are 1
    if (line == i || i == 0)
        arr[line][i] = 1;
    else // Other values are sum of values just above and left of above
        arr[line][i] = arr[line-1][i-1] + arr[line-1][i];
    System.out.print(arr[line][i]);
    }
    System.out.println("");
}
}
}

输出:


1 1 
1 2 1 
1 3 3 1 
1 4 6 4 1

时间复杂度:O(N^2)
辅助空间: O(N^2)

注意:此方法可以优化为使用 O(n) 额外空间,因为我们只需要前一行的值。因此,我们可以创建一个大小为 n 的辅助数组并覆盖值。以下是另一种仅使用 O(1) 额外空间的方法。

使用二项式系数的帕斯卡三角形(空间优化):
        该方法基于使用二项式系数的方法。我们知道行号 line 中的第 i 个条目是二项式系数 C(line, i) ,并且所有行都以值 1 开头。这个想法是使用C(line, i-1)计算C(line, i ) 。它可以在 O(1) 时间内计算出来。

C(line, i) = line! / ( (line-i)! * i! )
C(line, i-1) = line! / ( (line – i + 1)! * (i-1)! )

我们可以从以上两个表达式得出以下表达式。

C(line, i) = C(line, i-1) * (line – i + 1) / i

因此,可以在 O(1) 时间内通过 C(line, i-1) 计算出 C(line, i)

以下是该方法的实现:

// Java program for Pascal's Triangle
// A O(n^2) time and O(1) extra 
// space method for Pascal's Triangle
import java.io.*;
class GFG {
 
//Pascal function 
public static void printPascal(int n)
{
    for(int line = 1; line <= n; line++)
    {
         
    int C=1;// used to represent C(line, i)
    for(int i = 1; i <= line; i++)
    { 
        // The first value in a line is always 1
        System.out.print(C+" ");
        C = C * (line - i) / i; 
    }
    System.out.println();
    }
}
 
// Driver code
public static void main (String[] args) {
    int n = 5;
    printPascal(n);

}
// This code is contributed 
// by Archit Puri 

输出:


1 1 
1 2 1 
1 3 3 1 
1 4 6 4 1

时间复杂度: O(n 2 )
辅助空间: O(1)

面试中可能会问到的问题变体:

1、找到如上所示的整个帕斯卡三角形。

2、在 O(n) 时间内给定行号和列号,仅找到帕斯卡三角形的一个元素。

3、在 O(n) 时间内,给定行号,找到帕斯卡三角形的特定行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值