Javascript 两线交点程序(Program for Point of Intersection of Two Lines)

示例图  

        给定对应于线 AB 的点 A 和 B 以及对应于线 PQ 的点 P 和 Q,找到这些线的交点。这些点在 2D 平面中给出,并带有其 X 和 Y 坐标。示例:

输入:A = (1, 1), B = (4, 4) 
        C = (1, 8), D = (2, 4)

输出:给定直线 AB 和 CD 的交点
         是:(2.4, 2.4)

输入:A = (0, 1), B = (0, 4) 
        C = (1, 8), D = (1, 4)

输出:给定直线 AB 和 CD 平行。

        首先,假设我们有两个点 (x 1 , y 1 ) 和 (x 2 , y 2 )。现在,我们找到由这些点形成的直线方程。假设给定的直线为:

  1. a1x + b1y = c1​
  2. a2x + b2y = c2

        现在我们必须解这两个方程来找到交点。 为了求解,我们将 1 乘以 b 2并将 2 乘以 b 1这样我们得到 a 1 b 2 x + b 1 b 2 y = c 1 b 2 a 2 b 1 x + b 2 b 1 y = c 2 b 1减去这些我们得到 (a 1 b 2 – a 2 b 1 ) x = c 1 b 2 – c 2 b 1这样我们得到了 x 的值。 类似地,我们可以找到 y 的值。 (x, y) 给出了交点。注意:这给出了两条线的交点,但如果我们给出的是线段而不是直线,我们还必须重新检查这样计算出的点是否实际上位于两条线段上。如果线段由点 (x 1 , y 1 ) 和 (x 2 , y 2 ) 指定,那么要检查 (x, y) 是否在线段上,我们只需检查

  • 最小值 (x 1 , x 2 ) <= x <= 最大值 (x 1 , x 2 )
  • 最小值 (y 1 , y 2 ) <= y <= 最大值 (y 1 , y 2 )

上述实现的伪代码: 

determinant = a1 b2 - a2 b1
if (determinant == 0)
{
    // Lines are parallel
}
else
{
    x = (c1b2 - c2b1)/determinant
    y = (a1c2 - a2c1)/determinant
}

这些可以通过首先直接获得斜率,然后找到直线的截距来推导出来。  

 // Javascript program to find the point of
    // intersection of two lines
       
    // Class used to  used to store the X and Y
    // coordinates of a point respectively     
    class Point
    {
        constructor(x, y)
        {
            this.x = x;
            
            this.y = y;
        }
         
        // Method used to display X and Y coordinates
        // of a point
        displayPoint(p){
            document.write("(" + p.x + ", " + p.y + ")");
        }
    }
     
    function lineLineIntersection(A,B,C,D){
        // Line AB represented as a1x + b1y = c1
        var a1 = B.y - A.y;
        
        var b1 = A.x - B.x;
        
        var c1 = a1*(A.x) + b1*(A.y);
        
        // Line CD represented as a2x + b2y = c2
        var a2 = D.y - C.y;
        
        var b2 = C.x - D.x;
        
        var c2 = a2*(C.x)+ b2*(C.y);
        
        var determinant = a1*b2 - a2*b1;
        
        if (determinant == 0)
        {
            // The lines are parallel. This is simplified
            // by returning a pair of FLT_MAX
            return new Point(Number.MAX_VALUE, Number.MAX_VALUE);
        }
        else
        {
            var x = (b2*c1 - b1*c2)/determinant;
            var y = (a1*c2 - a2*c1)/determinant;
            return new Point(x, y);
        }
    }
      
    // Driver code
    let A = new Point(1, 1);
    
    let B = new Point(4, 4);
    
    let C = new Point(1, 8);
    
    let D = new Point(2, 4);
     
    var intersection = lineLineIntersection(A, B, C, D);
     
    if (intersection.x == Number.MAX_VALUE && intersection.y == Number.MAX_VALUE){
        document.write("The given lines AB and CD are parallel.");
    }else{
        // NOTE: Further check can be applied in case
        // of line segments. Here, we have considered AB
        // and CD as lines
       document.write("The intersection of the given lines AB " + "and CD is: ");
       
       intersection.displayPoint(intersection);
    }
     
    // This code is contributed by shruti456rawal


输出:

给定直线 AB 和 CD 的交点为:(2.4,2.4)

时间复杂度: O(1) 

辅助空间: O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值