Java 计算矩形中的正方形数量(Count number of squares in a rectangle)

给定一个 amxn 矩形,其中有多少个正方形?

例如: 

输入:   m = 2, n = 2
输出: 5
有 4 个尺寸为 1x1 的正方形 + 1 个尺寸为 2x2 的正方形。

输入: m = 4, n = 3
输出: 20
有 12 个尺寸为 1x1 的正方形 + 
          6 个尺寸为 2x2 的正方形 + 
          2 个尺寸为 3x3 的正方形。

我们先针对 m = n 即正方形解决这个问题:
对于 m = n = 1,输出:1
对于 m = n = 2,输出:4 + 1 [ 4 个大小为 1×1 + 1 个大小为 2×2 ] 对于
m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]
对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]
通常,它似乎是 n^2 + (n-1)^2 + … 1 = n(n+1)(2n+1)/6

当 m 可能不等于 n 时,让我们解决这个问题:假设 m <= n 

从上面的解释中,我们知道 amxm 矩阵的方格数为 m(m+1)(2m+1)/6

当我们添加一列时会发生什么,即 mx(m+1)矩阵中的方格数是多少?

当我们添加一列时,增加的方块数为 m + (m-1) + … + 3 + 2 + 1 
[ m 个大小为 1×1 的方块 + (m-1) 个大小为 2×2 的方块 + … + 1 个大小为 mxm 的方块 ] 
等于 m(m+1)/2

因此,当我们添加 (nm) 列时,增加的方格总数为 (nm)*m(m+1)/2。
因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。
使用相同的逻辑,我们可以证明 n <= m 的情况。

因此,总的来说, 

当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2

利用上述逻辑,我们也可以证明正方形中的正方形数量为 n(n+1)(2n+1)/6

以下是上述公式的实现:

// Java program to count squares
// in a rectangle of size m x n
 
class GFG
{
    // Returns count of all squares 
    // in a rectangle of size m x n
    static int countSquares(int m, int n)
    {
    // If n is smaller, swap m and n
    if (n < m)
    {
        // swap(m, n)
        int temp = m;
        m = n;
        n = temp;
    }
         
     
    // Now n is greater dimension, 
    // apply formula
    return m * (m + 1) * (2 * m + 1) / 
        6 + (n - m) * m * (m + 1) / 2;
    }
     
    // Driver Code
    public static void main(String[] args) 
    {
        int m = 4, n = 3;
        System.out.println("Count of squares is " + 
                            countSquares(m, n));
    }

输出 : 

方格数为 20

时间复杂度: O(1)

辅助空间: O(1)

替代解决方案: 

取 m = 2,n = 3;
边长为 1 的正方形的数量为 6,因为存在两种情况,第一种情况是沿水平方向的边长为 1 单位的正方形(2),第二种情况是沿垂直方向的边长为 1 单位的正方形(3)。这样一来,共有 2*3 = 6 个正方形。
当边长为 2 个单位时,第一种情况是水平方向只有一处有 2 个单位边长的正方形,第二种情况是垂直方向有两处有 2 个单位边长的正方形。因此,正方形的数量=2
因此我们可以推断,大小为 1*1 的正方形的数量为 m*n。大小为 2*2 的正方形的数量为 (n-1)(m-1)。因此,大小为 n 的正方形的数量为 1*(m-n+1)。
总方块数的最终公式为n*(n+1)(3m-n+1)/6

// Java program to count squares 
// in a rectangle of size m x n 
import java.util.*;
 
class GFG 
{
 
    // Returns count of all squares
    // in a rectangle of size m x n
    static int countSquares(int m, int n) 
    {
 
        // If n is smaller, swap m and n
        if (n < m) 
        {
            int temp = m;
            m = n;
            n = temp;
        }
 
        // Now n is greater dimension,
        // apply formula
        return n * (n + 1) * (3 * m - n + 1) / 6;
    }
 
    // Driver Code
    public static void main(String[] args) 
    {
        int m = 4;
        int n = 3;
        System.out.print("Count of squares is " + 
                             countSquares(m, n));
    }
}
 
// This code is contributed by 29AjayKumar

输出 : 

方格数为 20

时间复杂度: O(1)

辅助空间: O(1)

感谢 Pranav 提供这个替代解决方案。

方法#3:使用循环
此方法通过遍历从 1 到 m 和 n 中的最小值的所有可能的正方形尺寸,并累加可放入矩形的每种尺寸的正方形数量,来计算给定大小为 mxn 的矩形中的正方形数量。 

算法
1. 将计数器变量初始化为 0。
2. 遍历所有可能的正方形大小,即从 1 到 min(m, n)。
3. 对于每个正方形大小,计算可以形成的正方形数量。
4. 将此计数添加到计数器变量。
5. 返回最终计数。

public class Main {
    public static void main(String[] args) {
        int m = 4;
        int n = 3;
        System.out.println(countSquares(m, n));
    }
 
    // Function to count the number of squares in an m x n grid
    public static int countSquares(int m, int n) {
        int count = 0;
        for (int i = 1; i <= Math.min(m, n); i++) {
            // Calculate the number of squares with
            // side length 'i' that fit in the grid
            count += (m - i + 1) * (n - i + 1);
        }
        return count;
    }

输出:
20

时间复杂度:O(m * n * min(m, n))

空间复杂度:O(1)

如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值