蓝桥杯2023年第十四届省赛A组-平方差

题目描述

给定 L, R,问 L ≤ x ≤ R 中有多少个数 x 满足存在整数 y,z 使得 x = y^2 − z^2。

输入格式

输入一行包含两个整数 L, R,用一个空格分隔。

输出格式

输出一行包含一个整数满足题目给定条件的 x 的数量。

样例输入

1 5

样例输出

4

提示

1 = 1^2 − 0^2 ;

3 = 2^2 − 1^2 ;

4 = 2^2 − 0^2 ;

5 = 3^2 − 2^2 。

对于 40% 的评测用例,LR ≤ 5000 ;

对于所有评测用例,1 ≤ L ≤ R ≤ 10^9 。

整体思路

运用数论知识,只有当 x 为奇数或 4 的倍数时才能拆分为两个数的平方差。

#include <bits/stdc++.h>
#define endl '\n'
using namespace std;

int main()
{
	std::ios::sync_with_stdio(false);
	std::cin.tie(nullptr);
	int L, R;
	cin >> L >> R;
	int cnt = 0;
	for(int i = L; i <= R; i++)
	{
		if(i % 4 == 0 || i % 2 != 0)
		{
			cnt++;
		}
	}
	cout << cnt << endl;
	return 0;
}

公式推导

x = y^2 − z^2 可以变形为 x = (y - z)(y + z)。由于 y - z 和 y + z 的差等于偶数 2z,所以 y - z 和 y + z 是同奇偶性的,原命题等价什么正整数可以分解成两个同奇或同偶的因数的乘积。

偶数可以分为 4k 和 4k + 2 两类。首先看4k,显然 4 是它的一个因数,而 4 又等于 2 × 2,那么一定可以把 4k 形式的偶数分解成 2 乘以另一个不同于 2 的偶数 2k,原命题成立。再看 4k + 2,可以化为 2(2k + 1),即 2 与奇数的乘积,显然原命题不成立。

并且我们都知道,每个奇数都可以分解成两个奇数的乘积(1 * x),并且除 1 以外的每个奇数一定能够分解成两个不同奇数的乘积,原命题成立。

  • 11
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值