动态规划算法

基本思想

是求解决策过程最优化的数学方法。将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

(1)自上而下

从最顶端开始不断地分解问题,直到问题已经分解到最小并已得到解决,之后只用返回保存的答案。这叫做记忆存储

(2)自下而上

直接开始解决较小的子问题,从而获得最好的解决方案。在此过程中,需要保证在解决问题之前先解决子问题。这可以称为表格填充算法

动态规划与分治法的区别

动态规划:应用于子问题重叠的情况,即不同的子问题具有公共的子子问题。
分治法:将问题划分为互不相交的子问题,递归的求解子问题,再将它们的解组合起来,求出原问题的解。

步骤

(1)用一个数组来保存历史数组并定义数组元素的含义。
(2)利用历史数据来推出新的元素值,找出数组元素之间的关系式。
(3)找出初始值。

应用

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。

解决方案

(1)定义数组元素的含义
定义 dp[m][n]的含义为:当从左上角走到(m, n) 这个位置时,最小的路径和是 dp[m] [n]
(2)找关系数组元素间的关系式
dp[m] [n] = min(dp[m-1][n],dp[m][n-1]) + arr[m][n]; #arr[m][n] 表示[m][n]中的值
(3)找初始值
dp[0] [n] = arr[0] [n] + dp[0] [n-1]; # 最上面一行
dp[m] [0] = arr[m] [0] + dp[m] [0]; # 最左面一列

代码

def func(nums):
    m = len(nums)
    n = len(nums[0])
    dp = []
    for a in range(m):
        dp.append([])
        for b in range(n):
            dp[a].append(0)
    for i in range(n):
        dp[0][i] = 1 + nums[0][i]
    for j in range(m):
        dp[j][0] = 1 + nums[j][0]
    for h in range(1,m):
        for l in range(1,n):
            dp[h][l] = min(dp[h-1][l],dp[h][l-1]) + nums[h][l]
    return dp[h-1][l-1]
print(func([[1,3,1],[1,5,1],[4,2,1]]))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值